This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 73

2010 Purple Comet Problems, 24

Find the number of ordered pairs of integers $(m, n)$ that satisfy $20m-10n = mn$.

2013 AMC 12/AHSME, 6

Real numbers $x$ and $y$ satisfy the equation $x^2+y^2=10x-6y-34$. What is $x+y$? $ \textbf{(A) }1\qquad\textbf{(B) }2\qquad\textbf{(C) }3\qquad\textbf{(D) }6\qquad\textbf{(E) }8 $

2002 AMC 12/AHSME, 25

Let $ f(x)\equal{}x^2\plus{}6x\plus{}1$, and let $ R$ denote the set of points $ (x,y)$ in the coordinate plane such that \[ f(x)\plus{}f(y)\le0\text{ and }f(x)\minus{}f(y)\le0 \]The area of $ R$ is closest to $ \textbf{(A)}\ 21 \qquad \textbf{(B)}\ 22 \qquad \textbf{(C)}\ 23 \qquad \textbf{(D)}\ 24 \qquad \textbf{(E)}\ 25$

2010 ELMO Shortlist, 2

Given a prime $p$, show that \[\left(1+p\sum_{k=1}^{p-1}k^{-1}\right)^2 \equiv 1-p^2\sum_{k=1}^{p-1}k^{-2} \pmod{p^4}.\] [i]Timothy Chu.[/i]

2013 AMC 10, 11

Real numbers $x$ and $y$ satisfy the equation $x^2+y^2=10x-6y-34$. What is $x+y$? $ \textbf{(A) }1\qquad\textbf{(B) }2\qquad\textbf{(C) }3\qquad\textbf{(D) }6\qquad\textbf{(E) }8 $

1990 Baltic Way, 15

Prove that none of the numbers $2^{2^n}+ 1$, $n = 0, 1, 2, \dots$ is a perfect cube.

2012 Pan African, 1

The numbers $\frac{1}{1}, \frac{1}{2}, \cdots , \frac{1}{2012}$ are written on the blackboard. Aïcha chooses any two numbers from the blackboard, say $x$ and $y$, erases them and she writes instead the number $x + y + xy$. She continues to do this until only one number is left on the board. What are the possible values of the final number?

2024 AMC 12/AHSME, 9

Let $M$ be the greatest integer such that both $M + 1213$ and $M + 3773$ are perfect squares. What is the units digit of $M$? $ \textbf{(A) }1 \qquad \textbf{(B) }2 \qquad \textbf{(C) }3 \qquad \textbf{(D) }6 \qquad \textbf{(E) }8 \qquad $

2015 AMC 12/AHSME, 10

Integers $x$ and $y$ with $x>y>0$ satisfy $x+y+xy=80$. What is $x$? $\textbf{(A) }8\qquad\textbf{(B) }10\qquad\textbf{(C) }15\qquad\textbf{(D) }18\qquad\textbf{(E) }26$

2002 AIME Problems, 4

Consider the sequence defined by $a_k=\frac 1{k^2+k}$ for $k\ge 1.$ Given that $a_m+a_{m+1}+\cdots+a_{n-1}=1/29,$ for positive integers $m$ and $n$ with $m<n$, find $m+n.$

2011 AMC 12/AHSME, 21

The arithmetic mean of two distinct positive integers $x$ and $y$ is a two-digit integer. The geometric mean of $x$ and $y$ is obtained by reversing the digits of the arithmetic mean. What is $|x-y|$? $ \textbf{(A)}\ 24 \qquad \textbf{(B)}\ 48 \qquad \textbf{(C)}\ 54 \qquad \textbf{(D)}\ 66 \qquad \textbf{(E)}\ 70 $

1987 AIME Problems, 5

Find $3x^2 y^2$ if $x$ and $y$ are integers such that $y^2 + 3x^2 y^2 = 30x^2 + 517$.

2012 Today's Calculation Of Integral, 843

Let $f(x)$ be a continuous function such that $\int_0^1 f(x)\ dx=1.$ Find $f(x)$ for which $\int_0^1 (x^2+x+1)f(x)^2dx$ is minimized.

2004 AMC 12/AHSME, 13

If $ f(x) \equal{} ax \plus{} b$ and $ f^{ \minus{} 1}(x) \equal{} bx \plus{} a$ with $ a$ and $ b$ real, what is the value of $ a \plus{} b$? $ \textbf{(A)} \minus{} \!2 \qquad \textbf{(B)} \minus{} \!1 \qquad \textbf{(C)}\ 0 \qquad \textbf{(D)}\ 1 \qquad \textbf{(E)}\ 2$

2007 AMC 12/AHSME, 23

How many non-congruent right triangles with positive integer leg lengths have areas that are numerically equal to $ 3$ times their perimeters? $ \textbf{(A)}\ 6 \qquad \textbf{(B)}\ 7 \qquad \textbf{(C)}\ 8 \qquad \textbf{(D)}\ 10 \qquad \textbf{(E)}\ 12$

1989 Putnam, A1

How many base ten integers of the form 1010101...101 are prime?

2008 AMC 10, 7

The fraction \[\frac {(3^{2008})^2 - (3^{2006})^2}{(3^{2007})^2 - (3^{2005})^2}\] simplifies to which of the following? $ \textbf{(A)}\ 1 \qquad \textbf{(B)}\ \frac {9}{4} \qquad \textbf{(C)}\ 3 \qquad \textbf{(D)}\ \frac {9}{2} \qquad \textbf{(E)}\ 9$

2000 Junior Balkan MO, 2

Find all positive integers $n\geq 1$ such that $n^2+3^n$ is the square of an integer. [i]Bulgaria[/i]

2001 Slovenia National Olympiad, Problem 1

None of the positive integers $k,m,n$ are divisible by $5$. Prove that at least one of the numbers $k^2-m^2,m^2-n^2,n^2-k^2$ is divisible by $5$.

PEN A Problems, 18

Let $m$ and $n$ be natural numbers and let $mn+1$ be divisible by $24$. Show that $m+n$ is divisible by $24$.

2013 Pan African, 1

A positive integer $n$ is such that $n(n+2013)$ is a perfect square. a) Show that $n$ cannot be prime. b) Find a value of $n$ such that $n(n+2013)$ is a perfect square.

2013 AIME Problems, 5

The real root of the equation $8x^3 - 3x^2 - 3x - 1 = 0$ can be written in the form $\frac{\sqrt[3]a + \sqrt[3]b + 1}{c}$, where $a$, $b$, and $c$ are positive integers. Find $a+b+c$.

1953 AMC 12/AHSME, 3

The factors of the expression $ x^2\plus{}y^2$ are: $ \textbf{(A)}\ (x\plus{}y)(x\minus{}y) \qquad\textbf{(B)}\ (x\plus{}y)^2 \qquad\textbf{(C)}\ (x^{\frac{2}{3}}\plus{}y^{\frac{2}{3}})(x^{\frac{4}{3}}\plus{}y^{\frac{4}{3}}) \\ \textbf{(D)}\ (x\plus{}iy)(x\minus{}iy) \qquad\textbf{(E)}\ \text{none of these}$

2024 AMC 10, 15

Let $M$ be the greatest integer such that both $M + 1213$ and $M + 3773$ are perfect squares. What is the units digit of $M$? $ \textbf{(A) }1 \qquad \textbf{(B) }2 \qquad \textbf{(C) }3 \qquad \textbf{(D) }6 \qquad \textbf{(E) }8 \qquad $