Found problems: 594
2009 QEDMO 6th, 8
Given $n$ integers $a_1, a_2, ..., a_n$, which $a_1 = 1$ and $a_i \le a_{i + 1} \le 2a_i$ for each $i \in \{1,2,...,n-1\}$ .
Prove that if $a_1 + a_2 +... + a_n$ is even, you do select some of the numbers so that their sum equals $\frac{a_1 + a_2 +... + a_n}{2}$ .
2017 India PRMO, 6
Let the sum $\sum_{n=1}^{9} \frac{1}{n(n+1)(n+2)}$ written in its lowest terms be $\frac{p}{q}$ . Find the value of $q - p$.
2006 Dutch Mathematical Olympiad, 3
$1+2+3+4+5+6=6+7+8$.
What is the smallest number $k$ greater than $6$ for which:
$1 + 2 +...+ k = k + (k+1) +...+ n$, with $n$ an integer greater than $k$ ?
1999 Czech And Slovak Olympiad IIIA, 3
Show that there exists a triangle $ABC$ such that $a \ne b$ and $a+t_a = b+t_b$, where $t_a,t_b$ are the medians corresponding to $a,b$, respectively. Also prove that there exists a number $k$ such that every such triangle satisfies $a+t_a = b+t_b = k(a+b)$. Finally, find all possible ratios $a : b$ in such triangles.
1974 Poland - Second Round, 2
Prove that for every $ n = 2, 3, \ldots $ and any real numbers $ t_1, t_2, \ldots, t_n $, $ s_1, s_2, \ldots, s_n $, if
$$
\sum_{i=1}^n t_i = 0, \text{ to } \sum_{i=1}^n\sum_{j=1}^n t_it_j |s_i-s_j| \leq 0.$$
2006 MOP Homework, 5
Let $n$ be a nonnegative integer, and let $p$ be a prime number that is congruent to $7$ modulo $8$. Prove that
$$\sum_{k=1}^{p} \left\{ \frac{k^{2n}}{p} - \frac{1}{2} \right\} = \frac{p-1}{2}$$
1951 Moscow Mathematical Olympiad, 204
* Given several numbers each of which is less than $1951$ and the least common multiple of any two of which is greater than $1951$. Prove that the sum of their reciprocals is less than $2$.
2016 Thailand Mathematical Olympiad, 2
Let $M$ be a positive integer, and $A = \{1, 2,... , M + 1\}$. Show that if $f$ is a bijection from $A$ to $A$ then
$\sum_{n=1}^{M} \frac{1}{f(n) + f(n + 1)} > \frac{M}{M + 3}$
1985 All Soviet Union Mathematical Olympiad, 401
In the diagram below $a, b, c, d, e, f, g, h, i, j$ are distinct positive integers and each (except $a, e, h$ and $j$) is the sum of the two numbers to the left and above. For example, $b = a + e, f = e + h, i = h + j$. What is the smallest possible value of $d$?
j
h i
e f g
a b c d
2018 India PRMO, 6
Integers $a, b, c$ satisfy $a+b-c=1$ and $a^2+b^2-c^2=-1$. What is the sum of all possible values of $a^2+b^2+c^2$ ?
2001 Grosman Memorial Mathematical Olympiad, 2
If $x_1,x_2,...,x_{2001}$ are real numbers with $0 \le x_n \le 1$ for $n = 1,2,...,2001$, find the maximum value of
$$\left(\frac{1}{2001}\sum_{n=1}^{2001}x_n^2\right)-\left(\frac{1}{2001}\sum_{n=1}^{2001}x_n\right)^2$$
Where is this maximum attained?
1937 Moscow Mathematical Olympiad, 033
* On a plane two points $A$ and $B$ are on the same side of a line. Find point $M$ on the line such that $MA +MB$ is equal to a given length.
2015 Poland - Second Round, 1
Real numbers $x_1, x_2, x_3, x_4$ are roots of the fourth degree polynomial $W (x)$ with integer coefficients.
Prove that if $x_3 + x_4$ is a rational number and $x_3x_4$ is a irrational number, then $x_1 + x_2 = x_3 + x_4$.
2002 Singapore MO Open, 2
Let $a_1,a_2,...,a_n$ and $b_1,b_2,...,b_n$ be real numbers between $1001$ and $2002$ inclusive. Suppose $ \sum_{i=1}^n a_i^2= \sum_{i=1}^n b_i^2$. Prove that $$\sum_{i=1}^n\frac{a_i^3}{b_i} \le \frac{17}{10} \sum_{i=1}^n a_i^2$$
Determine when equality holds.
2020 LIMIT Category 2, 14
Let $f: N \to N$ satisfy $n=\sum_{d|n} f(d), \forall n \in N$. Then sum of all possible values of $f(100)$ is?
2010 Contests, 1
We write $\{a,b,c\}$ for the set of three different positive integers $a, b$, and $c$. By choosing some or all of the numbers a, b and c, we can form seven nonempty subsets of $\{a,b,c\}$. We can then calculate the sum of the elements of each subset. For example, for the set $\{4,7,42\}$ we will find sums of $4, 7, 42,11, 46, 49$, and $53$ for its seven subsets. Since $7, 11$, and $53$ are prime, the set $\{4,7,42\}$ has exactly three subsets whose sums are prime. (Recall that prime numbers are numbers with exactly two different factors, $1$ and themselves. In particular, the number $1$ is not prime.)
What is the largest possible number of subsets with prime sums that a set of three different positive integers can have? Give an example of a set $\{a,b,c\}$ that has that number of subsets with prime sums, and explain why no other three-element set could have more.
1935 Moscow Mathematical Olympiad, 020
How many ways are there of representing a positive integer $n$ as the sum of three positive integers? Representations which differ only in the order of the summands are considered to be distinct.
2004 Estonia Team Selection Test, 4
Denote $f(m) =\sum_{k=1}^m (-1)^k cos \frac{k\pi}{2 m + 1}$
For which positive integers $m$ is $f(m)$ rational?
2018 Dutch IMO TST, 3
Let $n \ge 0$ be an integer. A sequence $a_0,a_1,a_2,...$ of integers is defined as follows:
we have $a_0 = n$ and for $k \ge 1, a_k$ is the smallest integer greater than $a_{k-1}$ for which $a_k +a_{k-1}$ is the square of an integer.
Prove that there are exactly $\lfloor \sqrt{2n}\rfloor$ positive integers that cannot be written in the form $a_k - a_{\ell}$ with $k > \ell\ge 0$.
2014 Contests, 3
Give are the integers $a_{1}=11 , a_{2}=1111, a_{3}=111111, ... , a_{n}= 1111...111$( with $2n$ digits) with $n > 8$ .
Let $q_{i}= \frac{a_{i}}{11} , i= 1,2,3, ... , n$ the remainder of the division of $a_{i}$ by$ 11$ .
Prove that the sum of nine consecutive quotients: $s_{i}=q_{i}+q_{i+1}+q_{i+2}+ ... +q_{i+8}$ is a multiple of $9$ for any $i= 1,2,3, ... , (n-8)$
2010 Ukraine Team Selection Test, 12
Is there a positive integer $n$ for which the following holds:
for an arbitrary rational $r$ there exists an integer $b$ and non-zero integers $a _1, a_2, ..., a_n$ such that $r=b+\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_n}$ ?
1985 Greece National Olympiad, 4
Consider function $f:\mathbb{R}\to \mathbb{R}$ with $f(x)=\frac{4^x}{4^x+2},$ for any $x\in \mathbb{R}$
a) Prove that $f(x)+f(1-x)=1,$
b) Claculate the sum $$f\left(\frac{1}{1986} \right)+f\left(\frac{2}{1986} \right)+\cdots f\left(\frac{1986}{1986} \right).$$
2016 Czech And Slovak Olympiad III A, 1
Let $p> 3$ be a prime number. Determine the number of all ordered sixes $(a, b, c, d, e, f)$ of positive integers whose sum is $3p$ and all fractions $\frac{a + b}{c + d},\frac{b + c}{d + e},\frac{c + d}{e + f},\frac{d + e}{f + a},\frac{e + f}{a + b}$ have integer values.
1999 Estonia National Olympiad, 5
The numbers $0, 1, 2, . . . , 9$ are written (in some order) on the circumference. Prove that
a) there are three consecutive numbers with the sum being at least $15$,
b) it is not necessarily the case that there exist three consecutive numbers with the sum more than $15$.
2005 Abels Math Contest (Norwegian MO), 1a
A positive integer $m$ is called triangular if $m = 1 + 2 + ... + n$, for an integer $n$. Show that a positive integer $m$ is triangular if and only if $8m + 1$ is the square of an integer.