Found problems: 594
2007 Postal Coaching, 6
Define the [i]distance [/i] between two $5$-digit numbers $\overline{a_1a_2a_3a_4a_5}$ and $\overline{b_1b_2b_3b_4b_5}$ to be the largest integer $j$ such that $a_j \ne b_j$ . (Example: the distance between $16523$ and $16452$ is $5$.) Suppose all $5$-digit numbers are written in a line in some order. What is the minimal possible sum of the distances of adjacent numbers in that written order?
1990 Tournament Of Towns, (243) 1
For every natural number $n$ prove that $$\left( 1+ \frac12 + ...+ \frac1n \right)^2+ \left( \frac12 + ...+ \frac1n \right)^2+...+ \left( \frac{1}{n-1} + \frac12 \right)^2+ \left( \frac1n \right)^2=2n- \left( 1+ \frac12 + ...+ \frac1n \right)$$
(S. Manukian, Yerevan)
2018 India PRMO, 25
Let $T$ be the smallest positive integers which, when divided by $11,13,15$ leaves remainders in the sets {$7,8,9$}, {$1,2,3$}, {$4,5,6$} respectively. What is the sum of the squares of the digits of $T$ ?
2010 BAMO, 1
We write $\{a,b,c\}$ for the set of three different positive integers $a, b$, and $c$. By choosing some or all of the numbers a, b and c, we can form seven nonempty subsets of $\{a,b,c\}$. We can then calculate the sum of the elements of each subset. For example, for the set $\{4,7,42\}$ we will find sums of $4, 7, 42,11, 46, 49$, and $53$ for its seven subsets. Since $7, 11$, and $53$ are prime, the set $\{4,7,42\}$ has exactly three subsets whose sums are prime. (Recall that prime numbers are numbers with exactly two different factors, $1$ and themselves. In particular, the number $1$ is not prime.)
What is the largest possible number of subsets with prime sums that a set of three different positive integers can have? Give an example of a set $\{a,b,c\}$ that has that number of subsets with prime sums, and explain why no other three-element set could have more.
1963 Dutch Mathematical Olympiad, 3
Twenty numbers $a_1,a_2,..,a_{20}$ satisfy:
$$a_k \ge 7k \,\,\,\,\, for \,\,\,\,\, k = 1,2,..., 20$$
$$a_1+a_2+...+a_{20}=1518$$
Prove that among the numbers $k = 1,2,... ,20$ there are no more than seventeen, for which $a_k \ge 20k -2k^2$.
2014 Danube Mathematical Competition, 4
Consider the real numbers $a_1,a_2,...,a_{2n}$ whose sum is equal to $0$. Prove that among pairs $(a_i,a_j) , i<j$ where $ i,j \in \{1,2,...,2n\} $ .there are at least $2n-1$ pairs with the property that $a_i+a_j\ge 0$.
1983 Poland - Second Round, 4
Let $ a(k) $ be the largest odd number by which $ k $ is divisible. Prove that
$$
\sum_{k=1}^{2^n} a(k) = \frac{1}{3}(4^n+2).$$
2013 Danube Mathematical Competition, 2
Consider $64$ distinct natural numbers, at most equal to $2012$. Show that it is possible to choose four of them, denoted as $a,b,c,d$ such that $ a+b-c-d$ to be a multiple of $2013$
2013 Saudi Arabia BMO TST, 8
Prove that the ratio $$\frac{1^1 + 3^3 + 5^5 + ...+ (2^{2013} - 1)^{(2^{2013} - 1)}}{2^{2013}}$$ is an odd integer.
1962 Polish MO Finals, 1
Prove that if the numbers $ a_1, a_2,\ldots, a_n $ ($ n $ - natural number $ \geq 2 $) form an arithmetic progression, and none of them is zero, then
$$\frac{1}{a_1a_2} + \frac{1}{a_2a_3} + \ldots + \frac{1}{a_{n-1}a_n} = \frac{n-1}{a_1a_n}.$$
2002 Moldova Team Selection Test, 4
Let $C$ be the circle with center $O(0,0)$ and radius $1$, and $A(1,0), B(0,1)$ be points on the circle. Distinct points $A_1,A_2, ....,A_{n-1}$ on $C$ divide the smaller arc $AB$ into $n$ equal parts ($n \ge 2$). If $P_i$ is the orthogonal projection of $A_i$ on $OA$ ($i =1, ... ,n-1$), find all values of $n$ such that $P_1A^{2p}_1 +P_2A^{2p}_2 +...+P_{n-1}A^{2p}_{n-1}$ is an integer for every positive integer $p$.
1947 Putnam, A5
Let $a_1 , b_1 , c_1$ be positive real numbers whose sum is $1,$ and for $n=1, 2, \ldots$ we define
$$a_{n+1}= a_{n}^{2} +2 b_n c_n, \;\;\;b_{n+1}= b_{n}^{2} +2 a_n c_n, \;\;\; c_{n+1}= c_{n}^{2} +2 a_n b_n.$$
Show that $a_n , b_n ,c_n$ approach limits as $n\to \infty$ and find those limits.
1983 Brazil National Olympiad, 3
Show that $1 + 1/2 + 1/3 + ... + 1/n$ is not an integer for $n > 1$.
2010 Singapore Junior Math Olympiad, 3
Let $a_1, a_2, ..., a_n$ be positive integers, not necessarily distinct but with at least five distinct values. Suppose that for any $1 \le i < j \le n$, there exist $k,\ell$, both different from $i$ and $j$ such that $a_i + a_j = a_k + a_{\ell}$. What is the smallest possible value of $n$?
2005 Thailand Mathematical Olympiad, 8
For each subset $T$ of $S = \{1, 2, ... , 7\}$, the result $r(T)$ of T is computed as follows: the elements of $T$ are written, largest to smallest, and alternating signs $(+, -)$ starting with $+$ are put in front of each number. The value of the resulting expression is$ r(T)$. (For example, for $T =\{2, 4, 7\}$, we have $r(T) = +7 - 4 + 2 = 5$.) Compute the sum of $r(T)$ as $T$ ranges over all subsets of $S$.
2012 Tournament of Towns, 4
Alex marked one point on each of the six interior faces of a hollow unit cube. Then he connected by strings any two marked points on adjacent faces. Prove that the total length of these strings is at least $6\sqrt2$.
1946 Moscow Mathematical Olympiad, 122
On the sides $PQ, QR, RP$ of $\vartriangle PQR$ segments $AB, CD, EF$ are drawn. Given a point $S_0$ inside triangle $\vartriangle PQR$, find the locus of points $S$ for which the sum of the areas of triangles $\vartriangle SAB$, $\vartriangle SCD$ and $\vartriangle SEF$ is equal to the sum of the areas of triangles $\vartriangle S_0AB$, $\vartriangle S_0CD$, $\vartriangle S0EF$. Consider separately the case $$\frac{AB}{PQ }= \frac{CD}{QR} = \frac{EF}{RP}.$$
2008 Greece JBMO TST, 4
Product of two integers is $1$ less than three times of their sum. Find those integers.
1998 Czech And Slovak Olympiad IIIA, 2
Given any set of $14$ (different) natural numbers, prove that for some $k$ ($1 \le k \le 7$) there exist two disjoint $k$-element subsets $\{a_1,...,a_k\}$ and $\{b_1,...,b_k\}$ such that $A =\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_k}$ and $B =\frac{1}{b_1}+\frac{1}{b_2}+...+\frac{1}{b_k}$ differ by less than $0.001$, i.e. $|A-B| < 0.001$
1974 Swedish Mathematical Competition, 1
Let $a_n = 2^{n-1}$ for $n > 0$. Let
\[
b_n = \sum\limits_{r+s \leq n} a_ra_s
\]
Find $b_n-b_{n-1}$, $b_n-2b_{n-1}$ and $b_n$.
2000 Tournament Of Towns, 4
(a) Does there exist an infinite sequence of real numbers such that the sum of every ten successive numbers is positive, while for every $n$ the sum of the first $10n + 1$ successive numbers is negative?
(b) Does there exist an infinite sequence of integers with the same properties?
(AK Tolpygo)
2009 Singapore Junior Math Olympiad, 4
Let $S$ be the set of integers that can be written in the form $50m + 3n$ where $m$ and $n$ are non-negative integers. For example $3, 50, 53$ are all in $S$. Find the sum of all positive integers not in $S$.
1995 Israel Mathematical Olympiad, 3
If $k$ and $n$ are positive integers, prove the inequality
$$\frac{1}{kn} +\frac{1}{kn+1} +...+\frac{1}{(k+1)n-1} \ge n \left(\sqrt[n]{\frac{k+1}{k}}-1\right)$$
2008 Dutch IMO TST, 3
Let $m, n$ be positive integers. Consider a sequence of positive integers $a_1, a_2, ... , a_n$ that satisfies $m = a_1 \ge a_2\ge ... \ge a_n \ge 1$. Then define, for $1\le i\le m$, $b_i =$ # $\{ j \in \{1, 2, ... , n\}: a_j \ge i\}$,
so $b_i$ is the number of terms $a_j $ of the given sequence for which $a_j \ge i$.
Similarly, we define, for $1\le j \le n$, $c_j=$ # $\{ i \in \{1, 2, ... , m\}: b_i \ge j\}$ , thus $c_j$ is the number of terms bi in the given sequence for which $b_i \ge j$.
E.g.: If $a$ is the sequence $5, 3, 3, 2, 1, 1$ then $b$ is the sequence $6, 4, 3, 1, 1$.
(a) Prove that $a_j = c_j $ for $1 \le j \le n$.
(b) Prove that for $1\le k \le m$: $\sum_{i=1}^{k} b_i = k \cdot b_k + \sum_{j=b_{k+1}}^{n} a_j$.
2010 Junior Balkan Team Selection Tests - Romania, 2
Let $n$ be an integer, $n \ge 2$. For each number $k = 1, 2, ....., n,$ denote by $a _ k$ the number of multiples of $k$ in the set $\{1, 2,. .., n \}$ and let $x _ k = \frac {1} {1} + \frac {1} {2} + \frac {1} {3} _... + \frac {1} {a _ k}$ .
Show that: $$\frac {x _ 1 + x _ 2 + ... + x _ n} {n} \le \frac {1} {1 ^ 2} + \frac {1} {2 ^ 2} + ... + \frac {1} {n ^ 2} $$.