This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 744

2004 Germany Team Selection Test, 1

Let n be a positive integer. Find all complex numbers $x_{1}$, $x_{2}$, ..., $x_{n}$ satisfying the following system of equations: $x_{1}+2x_{2}+...+nx_{n}=0$, $x_{1}^{2}+2x_{2}^{2}+...+nx_{n}^{2}=0$, ... $x_{1}^{n}+2x_{2}^{n}+...+nx_{n}^{n}=0$.

1984 All Soviet Union Mathematical Olympiad, 382

Positive $x,y,z$ satisfy a system: $\begin{cases} x^2 + xy + y^2/3= 25 \\ y^2/ 3 + z^2 = 9 \\ z^2 + zx + x^2 = 16 \end{cases}$ Find the value of expression $xy + 2yz + 3zx$.

2007 Pan African, 1

Solve the following system of equations for real $x,y$ and $z$: \begin{eqnarray*} x &=& \sqrt{2y+3}\\ y &=& \sqrt{2z+3}\\ z &=& \sqrt{2x+3}. \end{eqnarray*}

2013 Hanoi Open Mathematics Competitions, 13

Solve the system of equations $\begin{cases} \frac{1}{x}+\frac{1}{y}=\frac{1}{6} \\ \frac{3}{x}+\frac{2}{y}=\frac{5}{6} \end{cases}$

2021 Bosnia and Herzegovina Junior BMO TST, 1

Determine all real numbers $a, b, c, d$ for which $$ab + c + d = 3$$ $$bc + d + a = 5$$ $$cd + a + b = 2$$ $$da + b + c = 6$$

2017 India PRMO, 2

Suppose $a, b$ are positive real numbers such that $a\sqrt{a} + b\sqrt{b} = 183, a\sqrt{b} + b\sqrt{a} = 182$. Find $\frac95 (a + b)$.

1986 IMO Longlists, 52

Solve the system of equations \[\tan x_1 +\cot x_1=3 \tan x_2,\]\[\tan x_2 +\cot x_2=3 \tan x_3,\]\[\vdots\]\[\tan x_n +\cot x_n=3 \tan x_1\]

2024 German National Olympiad, 1

The five real numbers $v,w,x,y,s$ satisfy the system of equations \begin{align*} v&=wx+ys,\\ v^2&=w^2x+y^2s,\\ v^3&=w^3x+y^3s. \end{align*} Show that at least two of them are equal.

2004 India IMO Training Camp, 3

Determine all functionf $f : \mathbb{R} \mapsto \mathbb{R}$ such that \[ f(x+y) = f(x)f(y) - c \sin{x} \sin{y} \] for all reals $x,y$ where $c> 1$ is a given constant.

1988 IMO Longlists, 62

Let $x = p, y = q, z = r, w = s$ be the unique solution of the system of linear equations \[ x + a_i \cdot y + a^2_i \cdot z + a^3_i \cdot w = a^4_i, i = 1,2,3,4. \] Express the solutions of the following system in terms of $p,q,r$ and $s:$ \[ x + a^2_i \cdot y + a^4_i \cdot z + a^6_i \cdot w = a^8_i, i = 1,2,3,4. \] Assume the uniquness of the solution.

1973 AMC 12/AHSME, 24

The check for a luncheon of 3 sandwiches, 7 cups of coffee and one piece of pie came to $ \$3.15$. The check for a luncheon consisting of 4 sandwiches, 10 cups of coffee and one piece of pie came to $ \$4.20$ at the same place. The cost of a luncheon consisting of one sandwich, one cup of coffee, and one piece of pie at the same place will come to $ \textbf{(A)}\ \$1.70 \qquad \textbf{(B)}\ \$1.65 \qquad \textbf{(C)}\ \$1.20 \qquad \textbf{(D)}\ \$1.05 \qquad \textbf{(E)}\ \$0.95$

1986 IMO, 1

Let $d$ be any positive integer not equal to $2, 5$ or $13$. Show that one can find distinct $a,b$ in the set $\{2,5,13,d\}$ such that $ab-1$ is not a perfect square.

1969 Poland - Second Round, 1

Prove that if the real numbers $ a, b, c, d $ satisfy the equations $$ \; a^2 + b^2 = 1,\; c^2 + d^2 = 1, \; ac + bd = -\frac{1}{2},$$ then $$a^2 + ac + c^2 = b^2 + bd + d^2.$$

1985 AIME Problems, 6

As shown in the figure, triangle $ABC$ is divided into six smaller triangles by lines drawn from the vertices through a common interior point. The areas of four of these triangles are as indicated. Find the area of triangle $ABC$. [asy] size(200); pair A=origin, B=(14,0), C=(9,12), D=foot(A, B,C), E=foot(B, A, C), F=foot(C, A, B), H=orthocenter(A, B, C); draw(F--C--A--B--C^^A--D^^B--E); label("$A$", A, SW); label("$B$", B, SE); label("$C$", C, N); label("84", centroid(H, C, E), fontsize(9.5)); label("35", centroid(H, B, D), fontsize(9.5)); label("30", centroid(H, F, B), fontsize(9.5)); label("40", centroid(H, A, F), fontsize(9.5));[/asy]

1993 IMO Shortlist, 4

Solve the following system of equations, in which $a$ is a given number satisfying $|a| > 1$: $\begin{matrix} x_{1}^2 = ax_2 + 1 \\ x_{2}^2 = ax_3 + 1 \\ \ldots \\ x_{999}^2 = ax_{1000} + 1 \\ x_{1000}^2 = ax_1 + 1 \\ \end{matrix}$

2018 Polish Junior MO First Round, 1

Numbers $a, b, c$ are such that $3a + 4b = 3c$ and $4a - 3b = 4c$. Show that $a^2 + b^2 = c^2$.

1967 IMO Shortlist, 5

If $x,y,z$ are real numbers satisfying relations \[x+y+z = 1 \quad \textrm{and} \quad \arctan x + \arctan y + \arctan z = \frac{\pi}{4},\] prove that $x^{2n+1} + y^{2n+1} + z^{2n+1} = 1$ holds for all positive integers $n$.

2003 Swedish Mathematical Competition, 1

If $x, y, z, w$ are nonnegative real numbers satisfying \[\left\{ \begin{array}{l}y = x - 2003 \\ z = 2y - 2003 \\ w = 3z - 2003 \\ \end{array} \right. \] find the smallest possible value of $x$ and the values of $y, z, w$ corresponding to it.

1999 Switzerland Team Selection Test, 4

Find all real solutions $(x,y,z)$ of the system $$\begin{cases}\dfrac{4x^2}{1+4x^2}= y\\ \\\dfrac{4y^2}{1+4y^2}= z\\ \\ \dfrac{4z^2}{1+4z^2}= x \end{cases}$$

2011 Hanoi Open Mathematics Competitions, 7

Find all pairs $(x, y)$ of real numbers satisfying the system : $\begin{cases} x + y = 3 \\ x^4 - y^4 = 8x - y \end{cases}$

2000 German National Olympiad, 1

For each real parameter $a$, find the number of real solutions to the system $$\begin{cases} |x|+|y| = 1 , \\ x^2 +y^2 = a \end{cases}$$

2023 Brazil National Olympiad, 4

Let $x, y, z$ be three real distinct numbers such that $$\begin{cases} x^2-x=yz \\ y^2-y=zx \\ z^2-z=xy \end{cases}$$ Show that $-\frac{1}{3} < x,y,z < 1$.

2008 JBMO Shortlist, 5

Find all triples $(x, y, z)$ of real positive numbers, which satisfy the system $\begin{cases} \frac{1}{x}+\frac{4}{y}+\frac{9}{z}=3 \\ x + y + z \le 12 \end{cases}$

1979 IMO, 2

Determine all real numbers a for which there exists positive reals $x_{1}, \ldots, x_{5}$ which satisfy the relations $ \sum_{k=1}^{5} kx_{k}=a,$ $ \sum_{k=1}^{5} k^{3}x_{k}=a^{2},$ $ \sum_{k=1}^{5} k^{5}x_{k}=a^{3}.$

1976 Vietnam National Olympiad, 1

Find all integer solutions to $m^{m+n} = n^{12}, n^{m+n} = m^3$.