This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 744

2019-IMOC, A3

Find all $3$-tuples of positive reals $(a,b,c)$ such that $$\begin{cases}a\sqrt[2019]b-c=a\\b\sqrt[2019]c-a=b\\c\sqrt[2019]a-b=c\end{cases}$$

2001 Putnam, 2

Find all pairs of real numbers $(x,y)$ satisfying the system of equations: \begin{align*}\frac{1}{x} + \frac{1}{2y} &= (x^2+3y^2)(3x^2+y^2)\\ \frac{1}{x} - \frac{1}{2y} &= 2(y^4-x^4)\end{align*}

1967 IMO Shortlist, 4

In what case does the system of equations $\begin{matrix} x + y + mz = a \\ x + my + z = b \\ mx + y + z = c \end{matrix}$ have a solution? Find conditions under which the unique solution of the above system is an arithmetic progression.

2001 Rioplatense Mathematical Olympiad, Level 3, 1

Find all integer numbers $a, b, m$ and $n$, such that the following two equalities are verified: $a^2+b^2=5mn$ and $m^2+n^2=5ab$

2016 Chile National Olympiad, 5

Determine all triples $(x, y, z)$ of nonnegative real numbers that verify the following system of equations: $$x^2 - y = (z -1)^2 $$ $$y^2 - z = (x -1)^2$$ $$z^2 - x = (y - 1)^2$$

III Soros Olympiad 1996 - 97 (Russia), 11.8

Solve the system of equations: $$ 2(3-2\cos y)^2+2(4-2\sin y)^2=2(3-x)^2+32=(x-2\cos y)^2+4\sin^2y$$

2014 Greece JBMO TST, 1

Find all the pairs of real numbers $(x,y)$ that are solutions of the system: $(x^{2}+y^{2})^{2}-xy(x+y)^{2}=19 $ $| x - y | = 1$

2004 Vietnam National Olympiad, 1

Solve the system of equations $ \begin{cases} x^3 \plus{} x(y \minus{} z)^2 \equal{} 2\\ y^3 \plus{} y(z \minus{} x)^2 \equal{} 30\\ z^3 \plus{} z(x \minus{} y)^2 \equal{} 16\end{cases}$.

2001 Estonia National Olympiad, 1

Solve the system of equations $$\begin{cases} \sin x = y \\ \sin y = x \end{cases}$$

1952 Moscow Mathematical Olympiad, 222

a) Solve the system of equations $\begin{cases} 1 - x_1x_2 = 0 \\ 1 - x_2x_3 = 0 \\ ...\\ 1 - x_{14}x_{15} = 0 \\ 1 - x_{15}x_1 = 0 \end{cases}$ b) Solve the system of equations $\begin{cases} 1 - x_1x_2 = 0 \\ 1 - x_2x_3 = 0 \\ ...\\ 1 - x_{n-1}x_{n} = 0 \\ 1 - x_{n}x_1 = 0 \end{cases}$ How does the solution vary for distinct values of $n$?

2017 Germany, Landesrunde - Grade 11/12, 6

Find all pairs $(x,y)$ of real numbers that satisfy the system \begin{align*} x \cdot \sqrt{1-y^2} &=\frac14 \left(\sqrt3+1 \right), \\ y \cdot \sqrt{1-x^2} &= \frac14 \left( \sqrt3 -1 \right). \end{align*}

2004 May Olympiad, 4

Find all the natural numbers $x, y, z$ that satisfy simultaneously $$\begin{cases} x y z=4104 \\ x+y+z=77 \end{cases}$$

2005 Austria Beginners' Competition, 3

Determine all triples $(x,y,z)$ of real numbers that satisfy all of the following three equations: $$\begin{cases} \lfloor x \rfloor + \{y\} =z \\ \lfloor y \rfloor + \{z\} =x \\ \lfloor z \rfloor + \{x\} =y \end{cases}$$

2011 Junior Balkan Team Selection Tests - Romania, 4

Show that there is an infinite number of positive integers $t$ such that none of the equations $$ \begin{cases} x^2 + y^6 = t \\ x^2 + y^6 = t + 1 \\ x^2 - y^6 = t \\ x^2 - y^6 = t + 1 \end{cases}$$ has solutions $(x, y) \in Z \times Z$.

1975 Czech and Slovak Olympiad III A, 2

Show that the system of equations \begin{align*} \lfloor x\rfloor^2+\lfloor y\rfloor &=0, \\ 3x+y &=2, \end{align*} has infinitely many solutions and all these solutions satisfy bounds \begin{align*} 0<\ &x <4, \\ -9\le\ &y\le 1. \end{align*}

1992 IMO Longlists, 36

Find all rational solutions of \[a^2 + c^2 + 17(b^2 + d^2) = 21,\]\[ab + cd = 2.\]

2024 Polish MO Finals, 4

Do there exist real numbers $a,b,c$ such that the system of equations \begin{align*} x+y+z&=a\\ x^2+y^2+z^2&=b\\ x^4+y^4+z^4&=c \end{align*} has infinitely many real solutions $(x,y,z)$?

2007 Harvard-MIT Mathematics Tournament, 9

The complex numbers $\alpha_1$, $\alpha_2$, $\alpha_3$, and $\alpha_4$ are the four distinct roots of the equation $x^4+2x^3+2=0$. Determine the unordered set \[\{\alpha_1\alpha_2+\alpha_3\alpha_4,\alpha_1\alpha_3+\alpha_2\alpha_4,\alpha_1\alpha_4+\alpha_2\alpha_3\}.\]

1926 Eotvos Mathematical Competition, 1

Prove that, if $a$ and $b$ are given integers, the system of equatìons $$x + y + 2z + 2t = a$$ $$2x - 2y + z- t = b$$ has a solution in integers $x, y,z,t$.

2020-21 KVS IOQM India, 9

find the number of ordered triples $(x,y,z)$ of real numbers that satisfy the system of equations: $x+y+z=7; x^2+y^2+z^2=27; xyz=5$.

2003 Abels Math Contest (Norwegian MO), 1a

Let $x$ and $y$ are real numbers such that $$\begin{cases} x + y = 2 \\ x^3 + y^3 = 3\end{cases} $$ What is $x^2+y^2$?

1950 AMC 12/AHSME, 17

The formula which expresses the relationship between $x$ and $y$ as shown in the accompanying table is: \[ \begin{tabular}[t]{|c|c|c|c|c|c|}\hline x&0&1&2&3&4\\\hline y&100&90&70&40&0\\\hline \end{tabular}\] $\textbf{(A)}\ y=100-10x \qquad \textbf{(B)}\ y=100-5x^2 \qquad \textbf{(C)}\ y=100-5x-5x^2 \qquad\\ \textbf{(D)}\ y=20-x-x^2 \qquad \textbf{(E)}\ \text{None of these}$

1995 IMO Shortlist, 2

Let $ a$ and $ b$ be non-negative integers such that $ ab \geq c^2,$ where $ c$ is an integer. Prove that there is a number $ n$ and integers $ x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_n$ such that \[ \sum^n_{i\equal{}1} x^2_i \equal{} a, \sum^n_{i\equal{}1} y^2_i \equal{} b, \text{ and } \sum^n_{i\equal{}1} x_iy_i \equal{} c.\]

2020 Baltic Way, 5

Find all real numbers $x,y,z$ so that \begin{align*} x^2 y + y^2 z + z^2 &= 0 \\ z^3 + z^2 y + z y^3 + x^2 y &= \frac{1}{4}(x^4 + y^4). \end{align*}

1995 Swedish Mathematical Competition, 3

Let $a,b,x,y$ be positive numbers with $a+b+x+y < 2$. Given that $$\begin{cases} a+b^2 = x+y^2 \\ a^2 +b = x^2 +y\end {cases} $$ show that $a = x$ and $b = y$