Found problems: 844
2005 Bulgaria Team Selection Test, 5
Let $ABC$, $AC \not= BC$, be an acute triangle with orthocenter $H$ and incenter $I$. The lines $CH$ and $CI$ meet the circumcircle of $\bigtriangleup ABC$ at points $D$ and $L$, respectively. Prove that $\angle CIH = 90^{\circ}$ if and only if $\angle IDL = 90^{\circ}$
Cono Sur Shortlist - geometry, 1993.2
Let $ABCD$ be a quadrilateral and let $O$ be the point of intersection of diagonals $AC$ and $BD$. Knowing that the area of triangle $AOB$ is equal to $ 1$, the area of triangle $BOC$ is equal to $2$, and the area of triangle $COD$ is equal to $4$, calculate the area of triangle $AOD$ and prove that $ABCD$ is a trapezoid.
2016 Bosnia And Herzegovina - Regional Olympiad, 3
Nine lines are given such that every one of them intersects given square $ABCD$ on two trapezoids, which area ratio is $2 : 3$. Prove that at least $3$ of those $9$ lines pass through the same point
2019 Polish Junior MO Second Round, 2.
Let $ABCD$ be the trapezium with bases $AB$ and $CD$, such that $\sphericalangle ABC = 90^{\circ}$. The bisector of angle $BAD$ intersects the segment $BC$ in the point $P$. Show that if $\sphericalangle APD = 45^{\circ}$, then area of quadrilateral $APCD$ is equal to the area of the triangle $ABP$.
2021 Czech-Polish-Slovak Junior Match, 1
Consider a trapezoid $ABCD$ with bases $AB$ and $CD$ satisfying $| AB | > | CD |$. Let $M$ be the midpoint of $AB$. Let the point $P$ lie inside $ABCD$ such that $| AD | = | PC |$ and $| BC | = | PD |$. Prove that if $| \angle CMD | = 90^o$, then the quadrilaterals $AMPD$ and $BMPC$ have the same area.
1959 AMC 12/AHSME, 22
The line joining the midpoints of the diagonals of a trapezoid has length $3$. If the longer base is $97$, then the shorter base is:
$ \textbf{(A)}\ 94 \qquad\textbf{(B)}\ 92\qquad\textbf{(C)}\ 91\qquad\textbf{(D)}\ 90\qquad\textbf{(E)}\ 89 $
1994 All-Russian Olympiad, 7
A trapezoid $ABCD$ ($AB ///CD$) has the property that there are points $P$ and $Q$ on sides $AD$ and $BC$ respectively such that $\angle APB = \angle CPD$ and $\angle AQB = \angle CQD$. Show that the points $P$ and $Q$ are equidistant from the intersection point of the diagonals of the trapezoid.
(M. Smurov)
2018 Belarusian National Olympiad, 10.4
Some cells of a checkered plane are marked so that figure $A$ formed by marked cells satisfies the following condition:$1)$ any cell of the figure $A$ has exactly two adjacent cells of $A$; and $2)$ the figure $A$ can be divided into isosceles trapezoids of area $2$ with vertices at the grid nodes (and acute angles of trapezoids are equal to $45$) . Prove that the number of marked cells is divisible by $8$.
2008 Kyiv Mathematical Festival, 4
Let $ K,L,M$ and $ N$ be the midpoints of sides $ AB,$ $ BC,$ $ CD$ and $ AD$ of the convex quadrangle $ ABCD.$ Is it possible that points $ A,B,L,M,D$ lie on the same circle and points $ K,B,C,D,N$ lie on the same circle?
2004 National Olympiad First Round, 33
Let $ABCD$ be a trapezoid such that $|AB|=9$, $|CD|=5$ and $BC\parallel AD$. Let the internal angle bisector of angle $D$ meet the internal angle bisectors of angles $A$ and $C$ at $M$ and $N$, respectively. Let the internal angle bisector of angle $B$ meet the internal angle bisectors of angles $A$ and $C$ at $L$ and $K$, respectively. If $K$ is on $[AD]$ and $\dfrac{|LM|}{|KN|} = \dfrac 37$, what is $\dfrac{|MN|}{|KL|}$?
$
\textbf{(A)}\ \dfrac{62}{63}
\qquad\textbf{(B)}\ \dfrac{27}{35}
\qquad\textbf{(C)}\ \dfrac{2}{3}
\qquad\textbf{(D)}\ \dfrac{5}{21}
\qquad\textbf{(E)}\ \dfrac{24}{63}
$
1998 Czech And Slovak Olympiad IIIA, 5
A circle $k$ and a point $A$ outside it are given in the plane. Prove that all trapezoids, whose non-parallel sides meet at $A$, have the same intersection of diagonals.
1995 Tournament Of Towns, (458) 3
The non-parallel sides of a trapezium serve as the diameters of two circles. Prove that all four tangents to the circles drawn from the point of intersection of the diagonals are equal (if this point lies outside the circles).
(S Markelov)
1996 USAMO, 3
Let $ABC$ be a triangle. Prove that there is a line $\ell$ (in the plane of triangle $ABC$) such that the intersection of the interior of triangle $ABC$ and the interior of its reflection $A'B'C'$ in $\ell$ has area more than $\frac23$ the area of triangle $ABC$.
2002 All-Russian Olympiad, 2
A quadrilateral $ABCD$ is inscribed in a circle $\omega$. The tangent to $\omega$ at $A$ intersects the ray $CB$ at $K$, and the tangent to $\omega$ at $B$ intersects the ray $DA$ at $M$. Prove that if $AM=AD$ and $BK=BC$, then $ABCD$ is a trapezoid.
2014 Greece Team Selection Test, 3
Let $ABC$ be an acute,non-isosceles triangle with $AB<AC<BC$.Let $D,E,Z$ be the midpoints of $BC,AC,AB$ respectively and segments $BK,CL$ are altitudes.In the extension of $DZ$ we take a point $M$ such that the parallel from $M$ to $KL$ crosses the extensions of $CA,BA,DE$ at $S,T,N$ respectively (we extend $CA$ to $A$-side and $BA$ to $A$-side and $DE$ to $E$-side).If the circumcirle $(c_{1})$ of $\triangle{MBD}$ crosses the line $DN$ at $R$ and the circumcirle $(c_{2})$ of $\triangle{NCD}$ crosses the line $DM$ at $P$ prove that $ST\parallel PR$.
2012 Online Math Open Problems, 47
Let $ABCD$ be an isosceles trapezoid with bases $AB=5$ and $CD=7$ and legs $BC=AD=2 \sqrt{10}.$ A circle $\omega$ with center $O$ passes through $A,B,C,$ and $D.$ Let $M$ be the midpoint of segment $CD,$ and ray $AM$ meet $\omega$ again at $E.$ Let $N$ be the midpoint of $BE$ and $P$ be the intersection of $BE$ with $CD.$ Let $Q$ be the intersection of ray $ON$ with ray $DC.$ There is a point $R$ on the circumcircle of $PNQ$ such that $\angle PRC = 45^\circ.$ The length of $DR$ can be expressed in the form $\frac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. What is $m+n$?
[i]Author: Ray Li[/i]
2010 Sharygin Geometry Olympiad, 22
A circle centered at a point $F$ and a parabola with focus $F$ have two common points. Prove that there exist four points $A, B, C, D$ on the circle such that the lines $AB, BC, CD$ and $DA$ touch the parabola.
2014 France Team Selection Test, 5
Let $\omega$ be the circumcircle of a triangle $ABC$. Denote by $M$ and $N$ the midpoints of the sides $AB$ and $AC$, respectively, and denote by $T$ the midpoint of the arc $BC$ of $\omega$ not containing $A$. The circumcircles of the triangles $AMT$ and $ANT$ intersect the perpendicular bisectors of $AC$ and $AB$ at points $X$ and $Y$, respectively; assume that $X$ and $Y$ lie inside the triangle $ABC$. The lines $MN$ and $XY$ intersect at $K$. Prove that $KA=KT$.
1999 National Olympiad First Round, 21
$ ABC$ is a triangle with $ \angle BAC \equal{} 10{}^\circ$, $ \angle ABC \equal{} 150{}^\circ$. Let $ X$ be a point on $ \left[AC\right]$ such that $ \left|AX\right| \equal{} \left|BC\right|$. Find $ \angle BXC$.
$\textbf{(A)}\ 15^\circ \qquad\textbf{(B)}\ 20^\circ \qquad\textbf{(C)}\ 25^\circ \qquad\textbf{(D)}\ 30^\circ \qquad\textbf{(E)}\ 35^\circ$
2010 ISI B.Math Entrance Exam, 10
Consider a regular heptagon ( polygon of $7$ equal sides and angles) $ABCDEFG$ as in the figure below:-
$(a).$ Prove $\frac{1}{\sin\frac{\pi}{7}}=\frac{1}{\sin\frac{2\pi}{7}}+\frac{1}{\sin\frac{3\pi}{7}}$
$(b).$ Using $(a)$ or otherwise, show that $\frac{1}{AG}=\frac{1}{AF}+\frac{1}{AE}$
[asy]
draw(dir(360/7)..dir(2*360/7),blue);
draw(dir(2*360/7)..dir(3*360/7),blue);
draw(dir(3*360/7)..dir(4*360/7),blue);
draw(dir(4*360/7)..dir(5*360/7),blue);
draw(dir(5*360/7)..dir(6*360/7),blue);
draw(dir(6*360/7)..dir(7*360/7),blue);
draw(dir(7*360/7)..dir(360/7),blue);
draw(dir(2*360/7)..dir(4*360/7),blue);
draw(dir(4*360/7)..dir(1*360/7),blue);
label("$A$",dir(4*360/7),W);
label("$B$",dir(5*360/7),S);
label("$C$",dir(6*360/7),S);
label("$D$",dir(7*360/7),E);
label("$E$",dir(1*360/7),E);
label("$F$",dir(2*360/7),N);
label("$G$",dir(3*360/7),W);
[/asy]
2013 AMC 12/AHSME, 11
Triangle $ABC$ is equilateral with $AB=1$. Points $E$ and $G$ are on $\overline{AC}$ and points $D$ and $F$ are on $\overline{AB}$ such that both $\overline{DE}$ and $\overline{FG}$ are parallel to $\overline{BC}$. Furthermore, triangle $ADE$ and trapezoids $DFGE$ and $FBCG$ all have the same perimeter. What is $DE+FG$?
[asy]
size(180);
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps);
real s=1/2,m=5/6,l=1;
pair A=origin,B=(l,0),C=rotate(60)*l,D=(s,0),E=rotate(60)*s,F=m,G=rotate(60)*m;
draw(A--B--C--cycle^^D--E^^F--G);
dot(A^^B^^C^^D^^E^^F^^G);
label("$A$",A,SW);
label("$B$",B,SE);
label("$C$",C,N);
label("$D$",D,S);
label("$E$",E,NW);
label("$F$",F,S);
label("$G$",G,NW);
[/asy]
$\textbf{(A) }1\qquad
\textbf{(B) }\dfrac{3}{2}\qquad
\textbf{(C) }\dfrac{21}{13}\qquad
\textbf{(D) }\dfrac{13}{8}\qquad
\textbf{(E) }\dfrac{5}{3}\qquad$
2001 Turkey MO (2nd round), 1
Let $ABCD$ be a convex quadrilateral. The perpendicular bisectors of the sides $[AD]$ and $[BC]$ intersect at a point $P$ inside the quadrilateral and the perpendicular bisectors of the sides $[AB]$ and $[CD]$ also intersect at a point $Q$ inside the quadrilateral. Show that, if $\angle APD = \angle BPC$ then $\angle AQB = \angle CQD$
2011 Indonesia TST, 3
Let $ABC$ and $PQR$ be two triangles such that
[list]
[b](a)[/b] $P$ is the mid-point of $BC$ and $A$ is the midpoint of $QR$.
[b](b)[/b] $QR$ bisects $\angle BAC$ and $BC$ bisects $\angle QPR$
[/list]
Prove that $AB+AC=PQ+PR$.
2001 Romania National Olympiad, 3
We consider a right trapezoid $ABCD$, in which $AB||CD,AB>CD,AD\perp AB$ and $AD>CD$. The diagonals $AC$ and $BD$ intersect at $O$. The parallel through $O$ to $AB$ intersects $AD$ in $E$ and $BE$ intersects $CD$ in $F$. Prove that $CE\perp AF$ if and only if $AB\cdot CD=AD^2-CD^2$ .
2008 Tournament Of Towns, 4
Let $ABCD$ be a non-isosceles trapezoid. Define a point $A1$ as intersection of circumcircle of triangle $BCD$ and line $AC$. (Choose $A_1$ distinct from $C$). Points $B_1, C_1, D_1$ are defined in similar way. Prove that $A_1B_1C_1D_1$ is a trapezoid as well.