This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 239

1963 AMC 12/AHSME, 34

In triangle ABC, side $a = \sqrt{3}$, side $b = \sqrt{3}$, and side $c > 3$. Let $x$ be the largest number such that the magnitude, in degrees, of the angle opposite side $c$ exceeds $x$. Then $x$ equals: $\textbf{(A)}\ 150 \qquad \textbf{(B)}\ 120\qquad \textbf{(C)}\ 105 \qquad \textbf{(D)}\ 90 \qquad \textbf{(E)}\ 60$

1982 AMC 12/AHSME, 23

The lengths of the sides of a triangle are consescutive integers, and the largest angle is twice the smallest angle. The cosine of the smallest angle is $\textbf {(A) } \frac 34 \qquad \textbf {(B) } \frac{7}{10} \qquad \textbf {(C) } \frac 23 \qquad \textbf {(D) } \frac{9}{14} \qquad \textbf {(E) } \text{none of these}$

2007 Today's Calculation Of Integral, 248

Evaluate $ \int_{\frac {\pi}{4}}^{\frac {3}{4}\pi } \cos \frac {1}{\sin \left(\frac {1}{\sin x}\right)}\cdot \cos \left(\frac {1}{\sin x}\right)\cdot \frac {\cos x}{\sin ^ 2 x\cdot \sin ^ 2 \left(\frac {1}{\sin x }\right)}\ dx$ Last Edited, Sorry kunny

2005 AIME Problems, 7

In quadrilateral $ABCD$, $BC=8$, $CD=12$, $AD=10$, and $m\angle A= m\angle B = 60^\circ$. Given that $AB=p + \sqrt{q}$, where $p$ and $q$ are positive integers, find $p+q$.

2003 AIME Problems, 11

Triangle $ABC$ is a right triangle with $AC=7,$ $BC=24,$ and right angle at $C.$ Point $M$ is the midpoint of $AB,$ and $D$ is on the same side of line $AB$ as $C$ so that $AD=BD=15.$ Given that the area of triangle $CDM$ may be expressed as $\frac{m\sqrt{n}}{p},$ where $m,$ $n,$ and $p$ are positive integers, $m$ and $p$ are relatively prime, and $n$ is not divisible by the square of any prime, find $m+n+p.$

1992 AMC 12/AHSME, 25

In triangle $ABC$, $\angle ABC = 120^{\circ}$, $AB = 3$ and $BC = 4$. If perpendiculars constructed to $\overline{AB}$ at $A$ and to $\overline{BC}$ at $C$ meet at $D$, then $CD = $ $ \textbf{(A)}\ 3\qquad\textbf{(B)}\ \frac{8}{\sqrt{3}}\qquad\textbf{(C)}\ 5\qquad\textbf{(D)}\ \frac{11}{2}\qquad\textbf{(E)}\ \frac{10}{\sqrt{3}} $

1992 India National Olympiad, 9

Let $A_1, A_2, \ldots, A_n$ be an $n$ -sided regular polygon. If $\frac{1}{A_1 A_2} = \frac{1}{A_1 A_3} + \frac{1}{A_1A_4}$, find $n$.

2010 Turkey Team Selection Test, 1

$D, \: E , \: F$ are points on the sides $AB, \: BC, \: CA,$ respectively, of a triangle $ABC$ such that $AD=AF, \: BD=BE,$ and $DE=DF.$ Let $I$ be the incenter of the triangle $ABC,$ and let $K$ be the point of intersection of the line $BI$ and the tangent line through $A$ to the circumcircle of the triangle $ABI.$ Show that $AK=EK$ if $AK=AD.$

2002 AMC 12/AHSME, 23

In triangle $ ABC$, side $ AC$ and the perpendicular bisector of $ BC$ meet in point $ D$, and $ BD$ bisects $ \angle ABC$. If $ AD \equal{} 9$ and $ DC \equal{} 7$, what is the area of triangle $ ABD$? $ \textbf{(A)}\ 14 \qquad \textbf{(B)}\ 21 \qquad \textbf{(C)}\ 28 \qquad \textbf{(D)}\ 14\sqrt5 \qquad \textbf{(E)}\ 28\sqrt5$

2007 Purple Comet Problems, 4

To the nearest degree, find the measure of the largest angle in a triangle with side lengths $3$, $5$, and $7$.

2003 France Team Selection Test, 3

$M$ is an arbitrary point inside $\triangle ABC$. $AM$ intersects the circumcircle of the triangle again at $A_1$. Find the points $M$ that minimise $\frac{MB\cdot MC}{MA_1}$.

2003 France Team Selection Test, 3

$M$ is an arbitrary point inside $\triangle ABC$. $AM$ intersects the circumcircle of the triangle again at $A_1$. Find the points $M$ that minimise $\frac{MB\cdot MC}{MA_1}$.

2007 Balkan MO Shortlist, G2

Let $ABCD$ a convex quadrilateral with $AB=BC=CD$, with $AC$ not equal to $BD$ and $E$ be the intersection point of it's diagonals. Prove that $AE=DE$ if and only if $\angle BAD+\angle ADC = 120$.

2011 Finnish National High School Mathematics Competition, 3

Points $D$ and $E$ divides the base $BC$ of an isosceles triangle $ABC$ into three equal parts and $D$ is between $B$ and $E.$ Show that $\angle BAD<\angle DAE.$