Found problems: 239
2005 China Girls Math Olympiad, 2
Find all ordered triples $ (x, y, z)$ of real numbers such that
\[ 5 \left(x \plus{} \frac{1}{x} \right) \equal{} 12 \left(y \plus{} \frac{1}{y} \right) \equal{} 13 \left(z \plus{} \frac{1}{z} \right),\]
and \[ xy \plus{} yz \plus{} zy \equal{} 1.\]
2015 India Regional MathematicaI Olympiad, 7
Let $x,y,z$ be real numbers such that $x^2+y^2+z^2-2xyz=1$. Prove that
\[ (1+x)(1+y)(1+z)\le 4+4xyz. \]
2004 China Team Selection Test, 2
Convex quadrilateral $ ABCD$ is inscribed in a circle, $ \angle{A}\equal{}60^o$, $ BC\equal{}CD\equal{}1$, rays $ AB$ and $ DC$ intersect at point $ E$, rays $ BC$ and $ AD$ intersect each other at point $ F$. It is given that the perimeters of triangle $ BCE$ and triangle $ CDF$ are both integers. Find the perimeter of quadrilateral $ ABCD$.
1997 Slovenia Team Selection Test, 4
Let $ABC$ be an equilateral triangle and let $P$ be a point in its interior. Let the lines $AP$, $BP$, $CP$ meet the sides $BC$, $CA$, $AB$ at the points $A_1$, $B_1$, $C_1$, respectively. Prove that
$A_1B_1 \cdot B_1C_1 \cdot C_1A_1 \ge A_1B \cdot B_1C \cdot C_1A$.
2007 Harvard-MIT Mathematics Tournament, 23
In triangle $ABC$, $\angle ABC$ is obtuse. Point $D$ lies on side $AC$ such that $\angle ABD$ is right, and point $E$ lies on side $AC$ between $A$ and $D$ such that $BD$ bisects $\angle EBC$. Find $CE$ given that $AC=35$, $BC=7$, and $BE=5$.
2005 Moldova Team Selection Test, 1
Let $ABC$ and $A_{1}B_{1}C_{1}$ be two triangles. Prove that
$\frac{a}{a_{1}}+\frac{b}{b_{1}}+\frac{c}{c_{1}}\leq\frac{3R}{2r_{1}}$,
where $a = BC$, $b = CA$, $c = AB$ are the sidelengths of triangle $ABC$, where $a_{1}=B_{1}C_{1}$, $b_{1}=C_{1}A_{1}$, $c_{1}=A_{1}B_{1}$ are the sidelengths of triangle $A_{1}B_{1}C_{1}$, where $R$ is the circumradius of triangle $ABC$ and $r_{1}$ is the inradius of triangle $A_{1}B_{1}C_{1}$.
2014 Dutch IMO TST, 2
Let $\triangle ABC$ be a triangle. Let $M$ be the midpoint of $BC$ and let $D$ be a point on the interior of side $AB$. The intersection of $AM$ and $CD$ is called $E$. Suppose that $|AD|=|DE|$. Prove that $|AB|=|CE|$.
1983 AMC 12/AHSME, 19
Point $D$ is on side $CB$ of triangle $ABC$. If \[ \angle{CAD} = \angle{DAB} = 60^\circ,\quad AC = 3\quad\mbox{ and }\quad AB = 6, \] then the length of $AD$ is
$\text{(A)} \ 2 \qquad \text{(B)} \ 2.5 \qquad \text{(C)} \ 3 \qquad \text{(D)} \ 3.5 \qquad \text{(E)} \ 4$
2013 Math Prize For Girls Problems, 7
In the figure below, $\triangle ABC$ is an equilateral triangle.
[asy]
import graph;
unitsize(60);
axes("$x$", "$y$", (0, 0), (1.5, 1.5), EndArrow);
real w = sqrt(3) - 1;
pair A = (1, 1);
pair B = (0, w);
pair C = (w, 0);
draw(A -- B -- C -- cycle);
dot(Label("$A(1, 1)$", A, NE), A);
dot(Label("$B$", B, W), B);
dot(Label("$C$", C, S), C);
[/asy]
Point $A$ has coordinates $(1, 1)$, point $B$ is on the positive $y$-axis, and point $C$ is on the positive $x$-axis. What is the area of $\triangle ABC$?
1958 AMC 12/AHSME, 36
The sides of a triangle are $ 30$, $ 70$, and $ 80$ units. If an altitude is dropped upon the side of length $ 80$, the larger segment cut off on this side is:
$ \textbf{(A)}\ 62\qquad
\textbf{(B)}\ 63\qquad
\textbf{(C)}\ 64\qquad
\textbf{(D)}\ 65\qquad
\textbf{(E)}\ 66$
2001 Stanford Mathematics Tournament, 15
Let $ABC$ be an isosceles triangle with $\angle{ABC} = \angle{ACB} = 80^\circ$. Let $D$ be a point on $AB$ such that $\angle{DCB} = 60^\circ$ and $E$ be a point on $AC$ such that $\angle{ABE} = 30^\circ$. Find $\angle{CDE}$ in degrees.
2008 IberoAmerican, 2
Given a triangle $ ABC$, let $ r$ be the external bisector of $ \angle ABC$. $ P$ and $ Q$ are the feet of the perpendiculars from $ A$ and $ C$ to $ r$. If $ CP \cap BA \equal{} M$ and $ AQ \cap BC\equal{}N$, show that $ MN$, $ r$ and $ AC$ concur.
2010 AMC 10, 19
Equiangular hexagon $ ABCDEF$ has side lengths $ AB \equal{} CD \equal{} EF \equal{} 1$ and $ BC \equal{} DE \equal{} FA \equal{} r$. The area of $ \triangle ACE$ is $70\%$ of the area of the hexagon. What is the sum of all possible values of $ r$?
$ \textbf{(A)}\ \frac {4\sqrt {3}}{3} \qquad
\textbf{(B)}\ \frac {10}{3} \qquad
\textbf{(C)}\ 4 \qquad
\textbf{(D)}\ \frac {17}{4} \qquad
\textbf{(E)}\ 6$
1994 Brazil National Olympiad, 2
Given any convex polygon, show that there are three consecutive vertices such that the polygon lies inside the circle through them.
2007 Harvard-MIT Mathematics Tournament, 7
Convex quadrilateral $ABCD$ has sides $AB=BC=7$, $CD=5$, and $AD=3$. Given additionally that $m\angle ABC=60^\circ$, find $BD$.
1995 AIME Problems, 9
Triangle $ABC$ is isosceles, with $AB=AC$ and altitude $AM=11.$ Suppose that there is a point $D$ on $\overline{AM}$ with $AD=10$ and $\angle BDC=3\angle BAC.$ Then the perimeter of $\triangle ABC$ may be written in the form $a+\sqrt{b},$ where $a$ and $b$ are integers. Find $a+b.$
[asy] import graph; size(7cm); real lsf=0.5; pen dps=linewidth(0.7)+fontsize(10); defaultpen(dps); pen ds=black; real xmin=-1.55,xmax=7.95,ymin=-4.41,ymax=5.3; draw((1,3)--(0,0)); draw((0,0)--(2,0)); draw((2,0)--(1,3)); draw((1,3)--(1,0)); draw((1,0.7)--(0,0)); draw((1,0.7)--(2,0)); label("$11$",(0.75,1.63),SE*lsf); dot((1,3),ds); label("$A$",(0.96,3.14),NE*lsf); dot((0,0),ds); label("$B$",(-0.15,-0.18),NE*lsf); dot((2,0),ds); label("$C$",(2.06,-0.18),NE*lsf); dot((1,0),ds); label("$M$",(0.97,-0.27),NE*lsf); dot((1,0.7),ds); label("$D$",(1.05,0.77),NE*lsf); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); [/asy]
2014 Online Math Open Problems, 11
Let $X$ be a point inside convex quadrilateral $ABCD$ with $\angle AXB+\angle CXD=180^{\circ}$. If $AX=14$, $BX=11$, $CX=5$, $DX=10$, and $AB=CD$, find the sum of the areas of $\triangle AXB$ and $\triangle CXD$.
[i]Proposed by Michael Kural[/i]
2012 Romania Team Selection Test, 1
Let $\Delta ABC$ be a triangle. The internal bisectors of angles $\angle CAB$ and $\angle ABC$ intersect segments $BC$, respectively $AC$ in $D$, respectively $E$. Prove that \[DE\leq (3-2\sqrt{2})(AB+BC+CA).\]
2014 PUMaC Geometry B, 5
Consider the cyclic quadrilateral with side lengths $1$, $4$, $8$, $7$ in that order. What is its circumdiameter? Let the answer be of the form $a\sqrt b+c$, for $b$ squarefree. Find $a+b+c$.
2002 AMC 12/AHSME, 17
Let $f(x)=\sqrt{\sin^4 x + 4\cos^2 x}-\sqrt{\cos^4x + 4\sin^2x}$. An equivalent form of $f(x)$ is
$\textbf{(A) }1-\sqrt2\sin x\qquad\textbf{(B) }-1+\sqrt2\cos x\qquad\textbf{(C) }\cos\dfrac x2-\sin\dfrac x2$
$\textbf{(D) }\cos x-\sin x\qquad\textbf{(E) }\cos2x$
2012 Sharygin Geometry Olympiad, 7
In a non-isosceles triangle $ABC$ the bisectors of angles $A$ and $B$ are inversely proportional to the respective sidelengths. Find angle $C$.
1991 AMC 12/AHSME, 29
Equilateral triangle $ABC$ has been creased and folded so that vertex $A$ now rests at $A'$ on $\overline{BC}$ as shown. If $BA' = 1$ and $A'C = 2$ then the length of crease $\overline{PQ}$ is
[asy]
size(170);
defaultpen(linewidth(0.7)+fontsize(10));
pair B=origin, A=(1.5,3*sqrt(3)/2), C=(3,0), D=(1,0), P=B+1.6*dir(B--A), Q=C+1.2*dir(C--A);
draw(B--P--D--B^^P--Q--D--C--Q);
draw(Q--A--P, linetype("4 4"));
label("$A$", A, N);
label("$B$", B, W);
label("$C$", C, E);
label("$A'$", D, S);
label("$P$", P, W);
label("$Q$", Q, E);
[/asy]
$ \textbf{(A)}\ \frac{8}{5}\qquad\textbf{(B)}\ \frac{7}{20}\sqrt{21}\qquad\textbf{(C)}\ \frac{1+\sqrt{5}}{2}\qquad\textbf{(D)}\ \frac{13}{8}\qquad\textbf{(E)}\ \sqrt{3} $
2011 Middle European Mathematical Olympiad, 6
Let $ABC$ be an acute triangle. Denote by $B_0$ and $C_0$ the feet of the altitudes from vertices $B$ and $C$, respectively. Let $X$ be a point inside the triangle $ABC$ such that the line $BX$ is tangent to the circumcircle of the triangle $AXC_0$ and the line $CX$ is tangent to the circumcircle of the triangle $AXB_0$. Show that the line $AX$ is perpendicular to $BC$.
2001 AIME Problems, 4
In triangle $ABC$, angles $A$ and $B$ measure 60 degrees and 45 degrees, respectively. The bisector of angle $A$ intersects $\overline{BC}$ at $T$, and $AT=24.$ The area of triangle $ABC$ can be written in the form $a+b\sqrt{c},$ where $a$, $b$, and $c$ are positive integers, and $c$ is not divisible by the square of any prime. Find $a+b+c.$
2003 AMC 10, 17
The number of inches in the perimeter of an equilateral triangle equals the number of square inches in the area of its circumscribed circle. What is the radius, in inches, of the circle?
$ \textbf{(A)}\ \frac{3\sqrt2}{\pi} \qquad
\textbf{(B)}\ \frac{3\sqrt3}{\pi} \qquad
\textbf{(C)}\ \sqrt3 \qquad
\textbf{(D)}\ \frac{6}{\pi} \qquad
\textbf{(E)}\ \sqrt3\pi$