This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3349

PEN F Problems, 4

Suppose that $\tan \alpha =\frac{p}{q}$, where $p$ and $q$ are integers and $q \neq 0$. Prove the number $\tan \beta$ for which $\tan 2\beta =\tan 3\alpha$ is rational only when $p^2 +q^2$ is the square of an integer.

Indonesia MO Shortlist - geometry, g11.8

Given an acute triangle $ ABC$. The incircle of triangle $ ABC$ touches $ BC,CA,AB$ respectively at $ D,E,F$. The angle bisector of $ \angle A$ cuts $ DE$ and $ DF$ respectively at $ K$ and $ L$. Suppose $ AA_1$ is one of the altitudes of triangle $ ABC$, and $ M$ be the midpoint of $ BC$. (a) Prove that $ BK$ and $ CL$ are perpendicular with the angle bisector of $ \angle BAC$. (b) Show that $ A_1KML$ is a cyclic quadrilateral.

2007 China Team Selection Test, 1

$ u,v,w > 0$,such that $ u \plus{} v \plus{} w \plus{} \sqrt {uvw} \equal{} 4$ prove that $ \sqrt {\frac {uv}{w}} \plus{} \sqrt {\frac {vw}{u}} \plus{} \sqrt {\frac {wu}{v}}\geq u \plus{} v \plus{} w$

2010 International Zhautykov Olympiad, 3

Let $ABC$ arbitrary triangle ($AB \neq BC \neq AC \neq AB$) And O,I,H it's circum-center, incenter and ortocenter (point of intersection altitudes). Prove, that 1) $\angle OIH > 90^0$(2 points) 2)$\angle OIH >135^0$(7 points) balls for 1) and 2) not additive.

2011 Morocco National Olympiad, 1

Let $x$, $y$, and $z$ be three real positive numbers such that $x^{2}+y^{2}+z^{2}+2xyz=1$. Prove that $2(x+y+z)\leq 3$.

1981 Romania Team Selection Tests, 1.

Show that for every real number $x$ we have \[\max(|\sin x|,|\sin (x+1)|)>\frac13.\]

1991 Arnold's Trivium, 51

Calculate the integral \[\int_{-\infty}^{+\infty}e^{ikx}\frac{1-e^x}{1+e^x}dx\]

2007 Moldova Team Selection Test, 3

Consider a triangle $ABC$, with corresponding sides $a,b,c$, inradius $r$ and circumradius $R$. If $r_{A}, r_{B}, r_{C}$ are the radii of the respective excircles of the triangle, show that \[a^{2}\left(\frac 2{r_{A}}-\frac{r}{r_{B}r_{C}}\right)+b^{2}\left(\frac 2{r_{B}}-\frac{r}{r_{A}r_{C}}\right)+c^{2}\left(\frac 2{r_{C}}-\frac{r}{r_{A}r_{B}}\right)=4(R+3r) \]

2009 Today's Calculation Of Integral, 497

Consider a parameterized curve $ C: x \equal{} e^{ \minus{} t}\cos t,\ y \equal{} e^{ \minus{} t}\sin t\ \left(0\leq t\leq \frac {\pi}{2}\right).$ (1) Find the length $ L$ of $ C$. (2) Find the area $ S$ of the region bounded by $ C$, the $ x$ axis and $ y$ axis. You may not use the formula $ \boxed{\int_a^b \frac {1}{2}r(\theta)^2d\theta }$ here.

2018 CMI B.Sc. Entrance Exam, 4

Let $ABC$ be an equilateral triangle of side length $2$. Point $A'$ is chosen on side $BC$ such that the length of $A'B$ is $k<1$. Likewise points $B'$ and $C'$ are chosen on sides $CA$ and $AB$. with $CB'=AC'=k$. Line segments are drawn from points $A',B',C'$ to their corresponding opposite vertices. The intersections of these line segments form a triangle, labeled $PQR$. Prove that $\Delta PQR$ is an equilateral triangle with side length ${4(1-k) \over \sqrt{k^2-2k+4}}$.

1966 German National Olympiad, 3

Consider all segments dividing the area of a triangle $ABC$ in two equal parts. Find the length of the shortest segment among them, if the side lengths $a,$ $b,$ $c$ of triangle $ABC$ are given. How many of these shortest segments exist ?

2018 AMC 12/AHSME, 23

Tags: trigonometry
In $\triangle PAT,$ $\angle P=36^{\circ},$ $\angle A=56^{\circ},$ and $PA=10.$ Points $U$ and $G$ lie on sides $\overline{TP}$ and $\overline{TA},$ respectively, so that $PU=AG=1.$ Let $M$ and $N$ be the midpoints of segments $\overline{PA}$ and $\overline{UG},$ respectively. What is the degree measure of the acute angle formed by lines $MN$ and $PA?$ $\textbf{(A) } 76 \qquad \textbf{(B) } 77 \qquad \textbf{(C) } 78 \qquad \textbf{(D) } 79 \qquad \textbf{(E) } 80 $

2006 IberoAmerican Olympiad For University Students, 3

Let $p_1(x)=p(x)=4x^3-3x$ and $p_{n+1}(x)=p(p_n(x))$ for each positive integer $n$. Also, let $A(n)$ be the set of all the real roots of the equation $p_n(x)=x$. Prove that $A(n)\subseteq A(2n)$ and that the product of the elements of $A(n)$ is the average of the elements of $A(2n)$.

1999 Vietnam National Olympiad, 1

Given are three positive real numbers $ a,b,c$ satisfying $ abc \plus{} a \plus{} c \equal{} b$. Find the max value of the expression: \[ P \equal{} \frac {2}{a^2 \plus{} 1} \minus{} \frac {2}{b^2 \plus{} 1} \plus{} \frac {3}{c^2 \plus{} 1}.\]

2005 BAMO, 3

Let $ n\ge12$ be an integer, and let $ P_1,P_2,...P_n, Q$ be distinct points in a plane. Prove that for some $ i$, at least $ \frac{n}{6}\minus{}1$ of the distances $ P_1P_i,P_2P_i,...P_{i\minus{}1}P_i,P_{i\plus{}1}P_i,...P_nP_i$ are less than $ P_iQ$.

1978 IMO Shortlist, 16

Determine all the triples $(a, b, c)$ of positive real numbers such that the system \[ax + by -cz = 0,\]\[a \sqrt{1-x^2}+b \sqrt{1-y^2}-c \sqrt{1-z^2}=0,\] is compatible in the set of real numbers, and then find all its real solutions.

2008 National Olympiad First Round, 13

Let $ABC$ be a triangle such that angle $C$ is obtuse. Let $D\in [AB]$ and $[DC]\perp [BC]$. If $m(\widehat{ABC})=\alpha$, $m(\widehat{BCA})=3\alpha$, and $|AC|-|AD|=10$, what is $|BD|$? $ \textbf{(A)}\ 10 \qquad\textbf{(B)}\ 14 \qquad\textbf{(C)}\ 18 \qquad\textbf{(D)}\ 20 \qquad\textbf{(E)}\ 22 $

2013 Macedonia National Olympiad, 3

Acute angle triangle is given such that $ BC $ is the longest side. Let $ E $ and $ G $ be the intersection points from the altitude from $ A $ to $ BC $ with the circumscribed circle of triangle $ ABC $ and $ BC $ respectively. Let the center $ O $ of this circle is positioned on the perpendicular line from $ A $ to $ BE $. Let $ EM $ be perpendicular to $ AC $ and $ EF $ be perpendicular to $ AB $. Prove that the area of $ FBEG $ is greater than the area of $ MFE $.

2013 Iran MO (3rd Round), 3

Suppose line $\ell$ and four points $A,B,C,D$ lies on $\ell$. Suppose that circles $\omega_1 , \omega_2$ passes through $A,B$ and circles $\omega'_1 , \omega'_2$ passes through $C,D$. If $\omega_1 \perp \omega'_1$ and $\omega_2 \perp \omega'_2$ then prove that lines $O_1O'_2 , O_2O'_1 , \ell $ are concurrent where $O_1,O_2,O'_1,O'_2$ are center of $\omega_1 , \omega_2 , \omega'_1 , \omega'_2$.

2007 AMC 12/AHSME, 19

Rhombus $ ABCD$, with a side length $ 6$, is rolled to form a cylinder of volume $ 6$ by taping $ \overline{AB}$ to $ \overline{DC}.$ What is $ \sin(\angle ABC)$? $ \textbf{(A)}\ \frac {\pi}{9} \qquad \textbf{(B)}\ \frac {1}{2} \qquad \textbf{(C)}\ \frac {\pi}{6} \qquad \textbf{(D)}\ \frac {\pi}{4} \qquad \textbf{(E)}\ \frac {\sqrt3}{2}$

2006 Thailand Mathematical Olympiad, 6

A function $f : R \to R$ has $f(1) < 0$, and satisfy the functional equation $$f(\cos (x + y)) = (\cos x)f(\cos y) + 2f(\sin x)f(\sin y)$$ for all reals $x, y$. Compute $f \left(\frac{2006}{2549 }\right)$

2008 Spain Mathematical Olympiad, 2

Let $a$ and $b$ be two real numbers, with $0<a,b<1$. Prove that \[\sqrt{ab^2+a^2b}+\sqrt{(1-a)(1-b)^2+(1-a)^2(1-b)}<\sqrt{2}\]

2013 Today's Calculation Of Integral, 884

Prove that : \[\pi (e-1)<\int_0^{\pi} e^{|\cos 4x|}dx<2(e^{\frac{\pi}{2}}-1)\]

2017 All-Russian Olympiad, 1

$S=\sin{64x}+\sin{65x}$ and $C=\cos{64x}+\cos{65x}$ are both rational for some $x$. Prove, that for one of these sums both summands are rational too.