This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 236

2009 Today's Calculation Of Integral, 417

The functions $ f(x) ,\ g(x)$ satify that $ f(x) \equal{} \frac {x^3}{2} \plus{} 1 \minus{} x\int_0^x g(t)\ dt,\ g(x) \equal{} x \minus{} \int_0^1 f(t)\ dt$. Let $ l_1,\ l_2$ be the tangent lines of the curve $ y \equal{} f(x)$, which pass through the point $ (a,\ g(a))$ on the curve $ y \equal{} g(x)$. Find the minimum area of the figure bounded by the tangent tlines $ l_1,\ l_2$ and the curve $ y \equal{} f(x)$ .

2013 Stanford Mathematics Tournament, 23

Tags: vieta
Let $a$ and $b$ be the solutions to $x^2-7x+17=0$. Compute $a^4+b^4$.

2012 India Regional Mathematical Olympiad, 2

Let $P(x)=x^n+a_{n-1}x^{n-1}+\cdots+a_0$ be a polynomial of degree $n\geq 3.$ Knowing that $a_{n-1}=-\binom{n}{1}$ and $a_{n-2}=\binom{n}{2},$ and that all the roots of $P$ are real, find the remaining coefficients. Note that $\binom{n}{r}=\frac{n!}{(n-r)!r!}.$

1989 Federal Competition For Advanced Students, P2, 5

Tags: vieta , algebra
Find all real solutions of the system: $ x^2\plus{}2yz\equal{}x,$ $ y^2\plus{}2zx\equal{}y,$ $ z^2\plus{}2xy\equal{}z.$

2008 IMO Shortlist, 2

[b](a)[/b] Prove that \[\frac {x^{2}}{\left(x \minus{} 1\right)^{2}} \plus{} \frac {y^{2}}{\left(y \minus{} 1\right)^{2}} \plus{} \frac {z^{2}}{\left(z \minus{} 1\right)^{2}} \geq 1\] for all real numbers $x$, $y$, $z$, each different from $1$, and satisfying $xyz=1$. [b](b)[/b] Prove that equality holds above for infinitely many triples of rational numbers $x$, $y$, $z$, each different from $1$, and satisfying $xyz=1$. [i]Author: Walther Janous, Austria[/i]

2005 India National Olympiad, 3

Tags: quadratic , vieta , algebra
Let $p, q, r$ be positive real numbers, not all equal, such that some two of the equations \begin{eqnarray*} px^2 + 2qx + r &=& 0 \\ qx^2 + 2rx + p &=& 0 \\ rx^2 + 2px + q &=& 0 . \\ \end{eqnarray*} have a common root, say $\alpha$. Prove that $a)$ $\alpha$ is real and negative; $b)$ the remaining third quadratic equation has non-real roots.

1979 IMO Shortlist, 3

Find all polynomials $f(x)$ with real coefficients for which \[f(x)f(2x^2) = f(2x^3 + x).\]

2000 Harvard-MIT Mathematics Tournament, 6

If integers $m,n,k$ satisfy $m^2+n^2+1=kmn$, what values can $k$ have?

1959 AMC 12/AHSME, 44

The roots of $x^2+bx+c=0$ are both real and greater than $1$. Let $s=b+c+1$. Then $s:$ $ \textbf{(A)}\ \text{may be less than zero}\qquad\textbf{(B)}\ \text{may be equal to zero}\qquad$ $\textbf{(C)}\ \text{must be greater than zero}\qquad\textbf{(D)}\ \text{must be less than zero}\qquad $ $\textbf{(E)}\text{ must be between -1 and +1} $

1999 National Olympiad First Round, 34

For how many primes $ p$, there exits unique integers $ r$ and $ s$ such that for every integer $ x$ $ x^{3} \minus{} x \plus{} 2\equiv \left(x \minus{} r\right)^{2} \left(x \minus{} s\right)\pmod p$? $\textbf{(A)}\ 0 \qquad\textbf{(B)}\ 1 \qquad\textbf{(C)}\ 2 \qquad\textbf{(D)}\ 3 \qquad\textbf{(E)}\ \text{None}$

1960 AMC 12/AHSME, 11

For a given value of $k$ the product of the roots of \[ x^2-3kx+2k^2-1=0 \] is $7$. The roots may be characterized as: $ \textbf{(A) }\text{integral and positive} \qquad\textbf{(B) }\text{integral and negative} \qquad$ $\textbf{(C) }\text{rational, but not integral} \qquad\textbf{(D) }\text{irrational} \qquad\textbf{(E) } \text{imaginary} $

2008 AMC 10, 9

Tags: quadratic , vieta , algebra
A quadratic equation $ ax^2\minus{}2ax\plus{}b\equal{}0$ has two real solutions. What is the average of the solutions? $ \textbf{(A)}\ 1 \qquad \textbf{(B)}\ 2 \qquad \textbf{(C)}\ \frac{b}{a} \qquad \textbf{(D)}\ \frac{2b}{a} \qquad \textbf{(E)}\ \sqrt{2b\minus{}a}$

2012 ELMO Shortlist, 6

Prove that if $a$ and $b$ are positive integers and $ab>1$, then \[\left\lfloor\frac{(a-b)^2-1}{ab}\right\rfloor=\left\lfloor\frac{(a-b)^2-1}{ab-1}\right\rfloor.\]Here $\lfloor x\rfloor$ denotes the greatest integer not exceeding $x$. [i]Calvin Deng.[/i]

2012 Iran Team Selection Test, 1

Suppose $p$ is an odd prime number. We call the polynomial $f(x)=\sum_{j=0}^n a_jx^j$ with integer coefficients $i$-remainder if $ \sum_{p-1|j,j>0}a_{j}\equiv i\pmod{p}$. Prove that the set $\{f(0),f(1),...,f(p-1)\}$ is a complete residue system modulo $p$ if and only if polynomials $f(x), (f(x))^2,...,(f(x))^{p-2}$ are $0$-remainder and the polynomial $(f(x))^{p-1}$ is $1$-remainder. [i]Proposed by Yahya Motevassel[/i]

2011 NIMO Summer Contest, 9

The roots of the polynomial $P(x) = x^3 + 5x + 4$ are $r$, $s$, and $t$. Evaluate $(r+s)^4 (s+t)^4 (t+r)^4$. [i]Proposed by Eugene Chen [/i]

1988 IMO Longlists, 42

Show that the solution set of the inequality \[ \sum^{70}_{k \equal{} 1} \frac {k}{x \minus{} k} \geq \frac {5}{4} \] is a union of disjoint intervals, the sum of whose length is 1988.

2015 AMC 10, 23

The zeroes of the function $f(x)=x^2-ax+2a$ are integers. What is the sum of all possible values of $a$? $\textbf{(A) }7\qquad\textbf{(B) }8\qquad\textbf{(C) }16\qquad\textbf{(D) }17\qquad\textbf{(E) }18$

2010 Tuymaada Olympiad, 3

Let $f(x) = ax^2+bx+c$ be a quadratic trinomial with $a$,$b$,$c$ reals such that any quadratic trinomial obtained by a permutation of $f$'s coefficients has an integer root (including $f$ itself). Show that $f(1)=0$.

2005 AIME Problems, 8

The equation \[2^{333x-2}+2^{111x+2}=2^{222x+1}+1\] has three real roots. Given that their sum is $m/n$ where $m$ and $n$ are relatively prime positive integers, find $m+n$.

1965 AMC 12/AHSME, 22

If $ a_2 \neq 0$ and $ r$ and $ s$ are the roots of $ a_0 \plus{} a_1x \plus{} a_2x^2 \equal{} 0$, then the equality $ a_0 \plus{} a_1x \plus{} a_2x^2 \equal{} a_0\left (1 \minus{} \frac {x}{r} \right ) \left (1 \minus{} \frac {x}{s} \right )$ holds: $ \textbf{(A)}\ \text{for all values of }x, a_0\neq 0$ $ \textbf{(B)}\ \text{for all values of }x$ $ \textbf{(C)}\ \text{only when }x \equal{} 0$ $ \textbf{(D)}\ \text{only when }x \equal{} r \text{ or }x \equal{} s$ $ \textbf{(E)}\ \text{only when }x \equal{} r \text{ or }x \equal{} s, a_0 \neq 0$

PEN A Problems, 6

[list=a][*] Find infinitely many pairs of integers $a$ and $b$ with $1<a<b$, so that $ab$ exactly divides $a^{2}+b^{2}-1$. [*] With $a$ and $b$ as above, what are the possible values of \[\frac{a^{2}+b^{2}-1}{ab}?\] [/list]

1997 China Team Selection Test, 1

Find all real-coefficient polynomials $f(x)$ which satisfy the following conditions: [b]i.[/b] $f(x) = a_0 x^{2n} + a_2 x^{2n - 2} + \cdots + a_{2n - 2} x^2 + a_{2n}, a_0 > 0$; [b]ii.[/b] $\sum_{j=0}^n a_{2j} a_{2n - 2j} \leq \left( \begin{array}{c} 2n\\ n\end{array} \right) a_0 a_{2n}$; [b]iii.[/b] All the roots of $f(x)$ are imaginary numbers with no real part.

1959 AMC 12/AHSME, 27

Which one of the following is [i] not [/i] true for the equation \[ix^2-x+2i=0,\] where $i=\sqrt{-1}$? $ \textbf{(A)}\ \text{The sum of the roots is 2} \qquad$ $\textbf{(B)}\ \text{The discriminant is 9}\qquad$ $\textbf{(C)}\ \text{The roots are imaginary}\qquad$ $\textbf{(D)}\ \text{The roots can be found using the quadratic formula}\qquad$ $\textbf{(E)}\ \text{The roots can be found by factoring, using imaginary numbers} $

2009 Harvard-MIT Mathematics Tournament, 8

Let $a$, $b$, and $c$ be the $3$ roots of $x^3-x+1=0$. Find $\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}.$

2012 ELMO Shortlist, 6

Prove that if $a$ and $b$ are positive integers and $ab>1$, then \[\left\lfloor\frac{(a-b)^2-1}{ab}\right\rfloor=\left\lfloor\frac{(a-b)^2-1}{ab-1}\right\rfloor.\]Here $\lfloor x\rfloor$ denotes the greatest integer not exceeding $x$. [i]Calvin Deng.[/i]