This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 236

2015 AMC 12/AHSME, 18

The zeroes of the function $f(x)=x^2-ax+2a$ are integers. What is the sum of all possible values of $a$? $\textbf{(A) }7\qquad\textbf{(B) }8\qquad\textbf{(C) }16\qquad\textbf{(D) }17\qquad\textbf{(E) }18$

2011 All-Russian Olympiad, 2

In the notebooks of Peter and Nick, two numbers are written. Initially, these two numbers are 1 and 2 for Peter and 3 and 4 for Nick. Once a minute, Peter writes a quadratic trinomial $f(x)$, the roots of which are the two numbers in his notebook, while Nick writes a quadratic trinomial $g(x)$ the roots of which are the numbers in [i]his[/i] notebook. If the equation $f(x)=g(x)$ has two distinct roots, one of the two boys replaces the numbers in his notebook by those two roots. Otherwise, nothing happens. If Peter once made one of his numbers 5, what did the other one of his numbers become?

2013 IFYM, Sozopol, 2

Do there exist natural numbers $a, b$ and $c$ such that $a^2+b^2+c^2$ is divisible by $2013(ab+bc+ca)$? [i]Proposed by Mahan Malihi[/i]

2003 Moldova Team Selection Test, 1

Let $ n>0$ be a natural number. Determine all the polynomials of degree $ 2n$ with real coefficients in the form $ P(X)\equal{}X^{2n}\plus{}(2n\minus{}10)X^{2n\minus{}1}\plus{}a_2X^{2n\minus{}2}\plus{}...\plus{}a_{2n\minus{}2}X^2\plus{}(2n\minus{}10)X\plus{}1$, if it is known that all the roots of them are positive reals. [i]Proposer[/i]: [b]Baltag Valeriu[/b]

MathLinks Contest 7th, 5.1

Find all real polynomials $ g(x)$ of degree at most $ n \minus{} 3$, $ n\geq 3$, knowing that all the roots of the polynomial $ f(x) \equal{} x^n \plus{} nx^{n \minus{} 1} \plus{} \frac {n(n \minus{} 1)}2 x^{n \minus{} 2} \plus{} g(x)$ are real.

1954 AMC 12/AHSME, 25

Tags: vieta
The two roots of the equation $ a(b\minus{}c)x^2\plus{}b(c\minus{}a)x\plus{}c(a\minus{}b)\equal{}0$ are $ 1$ and: $ \textbf{(A)}\ \frac{b(c\minus{}a)}{a(b\minus{}c)} \qquad \textbf{(B)}\ \frac{a(b\minus{}c)}{c(a\minus{}b)} \qquad \textbf{(C)}\ \frac{a(b\minus{}c)}{b(c\minus{}a)} \qquad \textbf{(D)}\ \frac{c(a\minus{}b)}{a(b\minus{}c)} \qquad \textbf{(E)}\ \frac{c(a\minus{}b)}{b(c\minus{}a)}$

1958 AMC 12/AHSME, 33

For one root of $ ax^2 \plus{} bx \plus{} c \equal{} 0$ to be double the other, the coefficients $ a,\,b,\,c$ must be related as follows: $ \textbf{(A)}\ 4b^2 \equal{} 9c\qquad \textbf{(B)}\ 2b^2 \equal{} 9ac\qquad \textbf{(C)}\ 2b^2 \equal{} 9a\qquad \\ \textbf{(D)}\ b^2 \minus{} 8ac \equal{} 0\qquad \textbf{(E)}\ 9b^2 \equal{} 2ac$

2001 National Olympiad First Round, 11

Tags: quadratic , vieta , sfft
For how many integers $n$, does the equation system \[\begin{array}{rcl} 2x+3y &=& 7\\ 5x + ny &=& n^2 \end{array}\] have a solution over integers? $ \textbf{(A)}\ 0 \qquad\textbf{(B)}\ 3 \qquad\textbf{(C)}\ 4 \qquad\textbf{(D)}\ 8 \qquad\textbf{(E)}\ \text{None of the preceding} $

2012 Stanford Mathematics Tournament, 6

There exist two triples of real numbers $(a,b,c)$ such that $a-\frac{1}{b}, b-\frac{1}{c}, c-\frac{1}{a}$ are the roots to the cubic equation $x^3-5x^2-15x+3$ listed in increasing order. Denote those $(a_1, b_1, c_1)$ and $(a_2, b_2, c_2)$. If $a_1$, $b_1$, and $c_1$ are the roots to monic cubic polynomial $f$ and $a_2, b_2$, and $c_2$ are the roots to monic cubic polynomial $g$, find $f(0)^3+g(0)^3$

2007 Today's Calculation Of Integral, 241

1.Let $ x \equal{} \alpha ,\ \beta \ (\alpha < \beta )$ are $ x$ coordinates of the intersection points of a parabola $ y \equal{} ax^2 \plus{} bx \plus{} c\ (a\neq 0)$ and the line $ y \equal{} ux \plus{} v$. Prove that the area of the region bounded by these graphs is $ \boxed{\frac {|a|}{6}(\beta \minus{} \alpha )^3}$. 2. Let $ x \equal{} \alpha ,\ \beta \ (\alpha < \beta )$ are $ x$ coordinates of the intersection points of parabolas $ y \equal{} ax^2 \plus{} bx \plus{} c$ and $ y \equal{} px^2 \plus{} qx \plus{} r\ (ap\neq 0)$. Prove that the area of the region bounded by these graphs is $ \boxed{\frac {|a \minus{} p|}{6}(\beta \minus{} \alpha )^3}$.

2002 Italy TST, 3

Prove that for any positive integer $ m$ there exist an infinite number of pairs of integers $(x,y)$ such that $(\text{i})$ $x$ and $y$ are relatively prime; $(\text{ii})$ $x$ divides $y^2+m;$ $(\text{iii})$ $y$ divides $x^2+m.$

1996 Canada National Olympiad, 1

If $\alpha$, $\beta$, and $\gamma$ are the roots of $x^3 - x - 1 = 0$, compute $\frac{1+\alpha}{1-\alpha} + \frac{1+\beta}{1-\beta} + \frac{1+\gamma}{1-\gamma}$.

2002 AMC 12/AHSME, 12

Both roots of the quadratic equation $ x^2 \minus{} 63x \plus{} k \equal{} 0$ are prime numbers. The number of possible values of $ k$ is $ \textbf{(A)}\ 0 \qquad \textbf{(B)}\ 1 \qquad \textbf{(C)}\ 2 \qquad \textbf{(D)}\ 3 \qquad \textbf{(E)}\ \textbf{more than four}$

2017 NIMO Summer Contest, 9

Let $P$ be a cubic monic polynomial with roots $a$, $b$, and $c$. If $P(1)=91$ and $P(-1)=-121$, compute the maximum possible value of \[\dfrac{ab+bc+ca}{abc+a+b+c}.\] [i]Proposed by David Altizio[/i]

1988 USAMO, 2

The cubic equation $x^3 + ax^2 + bx + c = 0$ has three real roots. Show that $a^2-3b\geq 0$, and that $\sqrt{a^2-3b}$ is less than or equal to the difference between the largest and smallest roots.

1968 AMC 12/AHSME, 13

Tags: quadratic , vieta
If $m$ and $n$ are the roots of $x^2+mx+n=0$, $m\ne0$, $n\ne0$, then the sum of the roots is: $\textbf{(A)}\ -\dfrac{1}{2} \qquad \textbf{(B)}\ -1 \qquad \textbf{(C)}\ \dfrac{1}{2} \qquad \textbf{(D)}\ 1 \qquad \textbf{(E)}\ \text{Undetermined} $

2014 AIME Problems, 6

The graphs of $y=3(x-h)^2+j$ and $y=2(x-h)^2+k$ have $y$-intercepts of $2013$ and $2014$, respectively, and each graph has two positive integer $x$-intercepts. Find $h$.

2003 AMC 10, 18

What is the sum of the reciprocals of the roots of the equation \[ \frac {2003}{2004}x \plus{} 1 \plus{} \frac {1}{x} \equal{} 0? \] $ \textbf{(A)}\ \minus{}\! \frac {2004}{2003} \qquad \textbf{(B)}\ \minus{} \!1 \qquad \textbf{(C)}\ \frac {2003}{2004} \qquad \textbf{(D)}\ 1 \qquad \textbf{(E)}\ \frac {2004}{2003}$

2014 Contests, 3

Find all $(m,n)$ in $\mathbb{N}^2$ such that $m\mid n^2+1$ and $n\mid m^2+1$.

2014 India Regional Mathematical Olympiad, 4

Find all positive reals $x,y,z $ such that \[2x-2y+\dfrac1z = \dfrac1{2014},\hspace{0.5em} 2y-2z +\dfrac1x = \dfrac1{2014},\hspace{0.5em}\text{and}\hspace{0.5em} 2z-2x+ \dfrac1y = \dfrac1{2014}.\]

1971 IMO Shortlist, 3

Knowing that the system \[x + y + z = 3,\]\[x^3 + y^3 + z^3 = 15,\]\[x^4 + y^4 + z^4 = 35,\] has a real solution $x, y, z$ for which $x^2 + y^2 + z^2 < 10$, find the value of $x^5 + y^5 + z^5$ for that solution.

1965 AMC 12/AHSME, 19

If $ x^4 \plus{} 4x^3 \plus{} 6px^2 \plus{} 4qx \plus{} r$ is exactly divisible by $ x^3 \plus{} 3x^2 \plus{} 9x \plus{} 3$, the value of $ (p \plus{} q)r$ is: $ \textbf{(A)}\ \minus{} 18 \qquad \textbf{(B)}\ 12 \qquad \textbf{(C)}\ 15 \qquad \textbf{(D)}\ 27 \qquad \textbf{(E)}\ 45 \qquad$

1969 AMC 12/AHSME, 5

Tags: vieta
If a number $N$, $N\neq 0$, diminished by four times its reciprocal, equals a given real constant $R$, then, for this given $R$, the sum of all such possible values of $N$ is: $\textbf{(A) }\dfrac1R\qquad \textbf{(B) }R\qquad \textbf{(C) }4\qquad \textbf{(D) }\dfrac14\qquad \textbf{(E) }-R$

2010 AMC 10, 19

Equiangular hexagon $ ABCDEF$ has side lengths $ AB \equal{} CD \equal{} EF \equal{} 1$ and $ BC \equal{} DE \equal{} FA \equal{} r$. The area of $ \triangle ACE$ is $70\%$ of the area of the hexagon. What is the sum of all possible values of $ r$? $ \textbf{(A)}\ \frac {4\sqrt {3}}{3} \qquad \textbf{(B)}\ \frac {10}{3} \qquad \textbf{(C)}\ 4 \qquad \textbf{(D)}\ \frac {17}{4} \qquad \textbf{(E)}\ 6$

1991 AIME Problems, 1

Find $x^2+y^2$ if $x$ and $y$ are positive integers such that \[xy+x+y = 71\qquad\text{and}\qquad x^2y+xy^2 = 880.\]