This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 68

1995 Romania Team Selection Test, 2

A cube is partitioned into finitely many rectangular parallelepipeds with the edges parallel to the edges of the cube. Prove that if the sum of the volumes of the circumspheres of these parallelepipeds equals the volume of the circumscribed sphere of the cube, then all the parallelepipeds are cubes.

1984 IMO Longlists, 11

Prove that the volume of a tetrahedron inscribed in a right circular cylinder of volume $1$ does not exceed $\frac{2}{3 \pi}.$

1990 IMO Shortlist, 10

A plane cuts a right circular cone of volume $ V$ into two parts. The plane is tangent to the circumference of the base of the cone and passes through the midpoint of the altitude. Find the volume of the smaller part. [i]Original formulation:[/i] A plane cuts a right circular cone into two parts. The plane is tangent to the circumference of the base of the cone and passes through the midpoint of the altitude. Find the ratio of the volume of the smaller part to the volume of the whole cone.

1990 IMO Longlists, 27

A plane cuts a right circular cone of volume $ V$ into two parts. The plane is tangent to the circumference of the base of the cone and passes through the midpoint of the altitude. Find the volume of the smaller part. [i]Original formulation:[/i] A plane cuts a right circular cone into two parts. The plane is tangent to the circumference of the base of the cone and passes through the midpoint of the altitude. Find the ratio of the volume of the smaller part to the volume of the whole cone.

2017 Adygea Teachers' Geometry Olympiad, 4

A regular tetrahedron $SABC$ of volume $V$ is given. The midpoints $D$ and $E$ are taken on $SA$ and $SB$ respectively and the point $F$ is taken on the edge $SC$ such that $SF: FC = 1: 3$. Find the volume of the pentahedron $FDEABC$.

1971 IMO Shortlist, 16

Let $P_1$ be a convex polyhedron with vertices $A_1,A_2,\ldots,A_9$. Let $P_i$ be the polyhedron obtained from $P_1$ by a translation that moves $A_1$ to $A_i$. Prove that at least two of the polyhedra $P_1,P_2,\ldots,P_9$ have an interior point in common.

1984 IMO Shortlist, 13

Prove that the volume of a tetrahedron inscribed in a right circular cylinder of volume $1$ does not exceed $\frac{2}{3 \pi}.$

1970 IMO Shortlist, 5

Let $M$ be an interior point of the tetrahedron $ABCD$. Prove that \[ \begin{array}{c}\ \stackrel{\longrightarrow }{MA} \text{vol}(MBCD) +\stackrel{\longrightarrow }{MB} \text{vol}(MACD) +\stackrel{\longrightarrow }{MC} \text{vol}(MABD) + \stackrel{\longrightarrow }{MD} \text{vol}(MABC) = 0 \end{array}\] ($\text{vol}(PQRS)$ denotes the volume of the tetrahedron $PQRS$).

1966 IMO Longlists, 21

Prove that the volume $V$ and the lateral area $S$ of a right circular cone satisfy the inequality \[\left( \frac{6V}{\pi}\right)^2 \leq \left( \frac{2S}{\pi \sqrt 3}\right)^3\] When does equality occur?

1967 IMO Shortlist, 1

Prove that a tetrahedron with just one edge length greater than $1$ has volume at most $ \frac{1}{8}.$

1967 IMO Longlists, 40

Prove that a tetrahedron with just one edge length greater than $1$ has volume at most $ \frac{1}{8}.$

1967 IMO Shortlist, 3

Determine the volume of the body obtained by cutting the ball of radius $R$ by the trihedron with vertex in the center of that ball, it its dihedral angles are $\alpha, \beta, \gamma.$

VI Soros Olympiad 1999 - 2000 (Russia), 11.8

Prove that the plane dividing in equal proportions the surface area and volume of the circumscribed polyhedron passes through the center of the sphere inscribed in this polyhedron.

1989 Poland - Second Round, 3

Given is a trihedral angle $ OABC $ with a vertex $ O $ and a point $ P $ in its interior. Let $ V $ be the volume of a parallelepiped with two vertices at points $ O $ and $ P $, whose three edges are contained in the rays $ \overrightarrow{OA} $, $ \overrightarrow{OB} $, $ \overrightarrow{OC} $. Calculate the minimum volume of a tetrahedron whose three faces are contained in the faces of the trihedral angle $OABC$ and the fourth face contains the point $P$.

2001 German National Olympiad, 6 (11)

In a pyramid $SABCD$ with the base $ABCD$ the triangles $ABD$ and $BCD$ have equal areas. Points $M,N,P,Q$ are the midpoints of the edges $AB,AD,SC,SD$ respectively. Find the ratio between the volumes of the pyramids $SABCD$ and $MNPQ$.

2003 Portugal MO, 1

The planet Caramelo is a cube with a $1$ km edge. This planet is going to be wrapped with foam anti-gluttons in order to prevent the presence of greedy ships less than $500$ meters from the planet. What the minimum volume of foam that must surround the planet?

1937 Moscow Mathematical Olympiad, 034

Two segments slide along two skew lines. On each straight line there is a segment. Consider the tetrahedron with vertices at the endpoints of the segments. Prove that the volume of the tetrahedron does not depend on the position of the segments

2019 Korea USCM, 2

Matrices $A$, $B$ are given as follows. \[A=\begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} 4 & 2 & 0 \\ 2 & 4 & 0 \\ 0 & 0 & 12\end{pmatrix}\] Find volume of $V=\{\mathbf{x}\in\mathbb{R}^3 : \mathbf{x}\cdot A\mathbf{x} \leq 1 < \mathbf{x}\cdot B\mathbf{x} \}$.