Found problems: 85335
2016 Iran MO (3rd Round), 1
Let $P(x) \in \mathbb {Z}[X]$ be a polynomial of degree $2016$ with no rational roots. Prove that there exists a polynomial $T(x) \in \mathbb {Z}[X]$ of degree $1395$ such that for all distinct (not necessarily real) roots of $P(x)$ like $(\alpha ,\beta):$
$$T(\alpha)-T(\beta) \not \in \mathbb {Q}$$
Note: $\mathbb {Q}$ is the set of rational numbers.
2022 Switzerland - Final Round, 2
Let $n$ be a positive integer. Prove that the numbers $$1^1, 3^3, 5^5, ..., (2n-1)^{2n-1}$$ all give different remainders when divided by $2^n$.
2014 Baltic Way, 7
Let $p_1, p_2, . . . , p_{30}$ be a permutation of the numbers $1, 2, . . . , 30.$ For how many permutations does the equality $\sum^{30}_{k=1}|p_k - k| = 450 $ hold?
1959 AMC 12/AHSME, 44
The roots of $x^2+bx+c=0$ are both real and greater than $1$. Let $s=b+c+1$. Then $s:$
$ \textbf{(A)}\ \text{may be less than zero}\qquad\textbf{(B)}\ \text{may be equal to zero}\qquad$ $\textbf{(C)}\ \text{must be greater than zero}\qquad\textbf{(D)}\ \text{must be less than zero}\qquad $
$\textbf{(E)}\text{ must be between -1 and +1} $
2017 Romanian Master of Mathematics Shortlist, C1
A planar country has an odd number of cities separated by pairwise distinct distances. Some of these cities are connected by direct two-way flights. Each city is directly connected to exactly two ther cities, and the latter are located farthest from it. Prove that, using these flights, one may go from any city to any other city
2021 Putnam, A6
Let $P(x)$ be a polynomial whose coefficients are all either $0$ or $1$. Suppose that $P(x)$ can be written as the product of two nonconstant polynomials with integer coefficients. Does it follow that $P(2)$ is a composite integer?
2005 Regional Competition For Advanced Students, 1
Show for all integers $ n \ge 2005$ the following chaine of inequalities:
$ (n\plus{}830)^{2005}<n(n\plus{}1)\dots(n\plus{}2004)<(n\plus{}1002)^{2005}$
2015 Bulgaria National Olympiad, 2
One hundred and one of the squares of an $n\times n$ table are colored blue. It is known that there exists a unique way to cut the table to rectangles along boundaries of its squares with the following property: every rectangle contains exactly one blue square. Find the smallest possible $n$.
2008 IMO Shortlist, 2
[b](a)[/b] Prove that
\[\frac {x^{2}}{\left(x \minus{} 1\right)^{2}} \plus{} \frac {y^{2}}{\left(y \minus{} 1\right)^{2}} \plus{} \frac {z^{2}}{\left(z \minus{} 1\right)^{2}} \geq 1\] for all real numbers $x$, $y$, $z$, each different from $1$, and satisfying $xyz=1$.
[b](b)[/b] Prove that equality holds above for infinitely many triples of rational numbers $x$, $y$, $z$, each different from $1$, and satisfying $xyz=1$.
[i]Author: Walther Janous, Austria[/i]
1989 Iran MO (2nd round), 2
A sphere $S$ with center $O$ and radius $R$ is given. Let $P$ be a fixed point on this sphere. Points $A,B,C$ move on the sphere $S$ such that we have $\angle APB = \angle BPC = \angle CPA = 90^\circ.$ Prove that the plane of triangle $ABC$ passes through a fixed point.
2010 Kyrgyzstan National Olympiad, 3
At the meeting, each person is familiar with 22 people. If two persons $A$ and $B$ know each with one another, among the remaining people they do not have a common friend. For each pair individuals $A$ and $B$ are not familiar with each other, there are among the remaining six common acquaintances. How many people were at the meeting?
2023 Iberoamerican, 3
Ann and Beto play with a two pan balance scale. They have $2023$ dumbbells labeled with their weights, which are the numbers $1, 2, \dots, 2023$, with none of them repeating themselves. Each player, in turn, chooses a dumbbell that was not yet placed on the balance scale and places it on the pan with the least weight at the moment. If the scale is balanced, the player places it on any pan. Ana starts the game, and they continue in this way alternately until all the dumbbells are placed. Ana wins if at the end the scale is balanced, otherwise Beto win. Determine which of the players has a winning strategy and describe the strategy.
2000 Junior Balkan MO, 4
At a tennis tournament there were $2n$ boys and $n$ girls participating. Every player played every other player. The boys won $\frac 75$ times as many matches as the girls. It is knowns that there were no draws. Find $n$.
[i]Serbia[/i]
2015 Postal Coaching, Problem 2
Suppose $a,b,c\in[0,2]$ and $a+b+c=3$. Find the maximal and minimal value of the expression
$$\sqrt{a(b+1)}+\sqrt{b(c+1)}+\sqrt{c(a+1)}.$$
2020 Purple Comet Problems, 4
The gure below shows a large circle with area $120$ containing a circle with half of the radius of the large circle and six circles with a quarter of the radius of the large circle. Find the area of the shaded region.
[img]https://cdn.artofproblemsolving.com/attachments/7/9/064a05feb9bd67896c079a5141bf7556d7165b.png[/img]
2005 All-Russian Olympiad, 2
Lesha put numbers from 1 to $22^2$ into cells of $22\times 22$ board. Can Oleg always choose two cells, adjacent by the side or by vertex, the sum of numbers in which is divisible by 4?
2019 Taiwan TST Round 1, 3
Let $k$ be a positive integer. The organising commitee of a tennis tournament is to schedule the matches for $2k$ players so that every two players play once, each day exactly one match is played, and each player arrives to the tournament site the day of his first match, and departs the day of his last match. For every day a player is present on the tournament, the committee has to pay $1$ coin to the hotel. The organisers want to design the schedule so as to minimise the total cost of all players' stays. Determine this minimum cost.
2013 Putnam, 2
Let $C=\bigcup_{N=1}^{\infty}C_N,$ where $C_N$ denotes the set of 'cosine polynomials' of the form \[f(x)=1+\sum_{n=1}^Na_n\cos(2\pi nx)\] for which:
(i) $f(x)\ge 0$ for all real $x,$ and
(ii) $a_n=0$ whenever $n$ is a multiple of $3.$
Determine the maximum value of $f(0)$ as $f$ ranges through $C,$ and prove that this maximum is attained.
2017-IMOC, A1
Prove that for all $a,b>0$ with $a+b=2$, we have
$$\left(a^n+1\right)\left(b^n+1\right)\ge4$$
for all $n\in\mathbb N_{\ge2}$.
2019 ABMC, 2019 Dec
[b]p1.[/b] Let $a$ be an integer. How many fractions $\frac{a}{100}$ are greater than $\frac17$ and less than $\frac13$ ?.
[b]p2.[/b] Justin Bieber invited Justin Timberlake and Justin Shan to eat sushi. There were $5$ different kinds of fish, $3$ different rice colors, and $11$ different sauces. Justin Shan insisted on a spicy sauce. If the probability of a sushi combination that pleased Justin Shan is $6/11$, then how many non-spicy sauces were there?
[b]p3.[/b] A palindrome is any number that reads the same forward and backward (for example, $99$ and $50505$ are palindromes but $2020$ is not). Find the sum of all three-digit palindromes whose tens digit is $5$.
[b]p4.[/b] Isaac is given an online quiz for his chemistry class in which he gets multiple tries. The quiz has $64$ multiple choice questions with $4$ choices each. For each of his previous attempts, the computer displays Isaac's answer to that question and whether it was correct or not. Given that Isaac is too lazy to actually read the questions, the maximum number of times he needs to attempt the quiz to guarantee a $100\%$ can be expressed as $2^{2^k}$. Find $k$.
[b]p5.[/b] Consider a three-way Venn Diagram composed of three circles of radius $1$. The area of the entire Venn Diagram is of the form $\frac{a}{b}\pi +\sqrt{c}$ for positive integers $a$, $b$, $c$ where $a$, $b$ are relatively prime. Find $a+b+c$. (Each of the circles passes through the center of the other two circles)
[b]p6.[/b] The sum of two four-digit numbers is $11044$. None of the digits are repeated and none of the digits are $0$s. Eight of the digits from $1-9$ are represented in these two numbers. Which one is not?
[b]p7.[/b] Al wants to buy cookies. He can buy cookies in packs of $13$, $15$, or $17$. What is the maximum number of cookies he can not buy if he must buy a whole number of packs of each size?
[b]p8.[/b] Let $\vartriangle ABC$ be a right triangle with base $AB = 2$ and hypotenuse $AC = 4$ and let $AD$ be a median of $\vartriangle ABC$. Now, let $BE$ be an altitude in $\vartriangle ABD$ and let $DF$ be an altitude in $\vartriangle ADC$. The quantity $(BE)^2 - (DF)^2$ can be expressed as a common fraction $\frac{a}{b}$ in lowest terms. Find $a + b$.
[b]p9.[/b] Let $P(x)$ be a monic cubic polynomial with roots $r$, $s$, $t$, where $t$ is real. Suppose that $r + s + 2t = 8$, $2rs + rt + st = 12$ and $rst = 9$. Find $|P(2)|$.
[b]p10.[/b] Let S be the set $\{1, 2,..., 21\}$. How many $11$-element subsets $T$ of $S$ are there such that there does not exist two distinct elements of $T$ such that one divides the other?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2022 Grosman Mathematical Olympiad, P5
$n$ lines are given in the plane so that no three of them concur and no two are parallel.
Show that there is a non-self-intersecting path consisting of $n$ straight segments so that each of the given lines contains exactly one of the segments of the path.
1983 IMO, 2
Is it possible to choose $1983$ distinct positive integers, all less than or equal to $10^5$, no three of which are consecutive terms of an arithmetic progression?
1988 IMO Longlists, 6
An $ n \times n, n \geq 2$ chessboard is numbered by the numbers $ 1, 2, \ldots, n^2$ (and every number occurs). Prove that there exist two neighbouring (with common edge) squares such that their numbers differ by at least $ n.$
2021 Austrian MO National Competition, 5
Let $ABCD$ be a convex cyclic quadrilateral with diagonals $AC$ and $BD$. Each of the four vertixes are reflected across the diagonal on which the do not lie.
(a) Investigate when the four points thus obtained lie on a straight line and give as simple an equivalent condition as possible to the cyclic quadrilateral $ABCD$ for it.
(b) Show that in all other cases the four points thus obtained lie on one circle.
(Theresia Eisenkölbl)
EMCC Team Rounds, 2015
[b]p1.[/b] Nicky is studying biology and has a tank of $17$ lizards. In one day, he can either remove $5$ lizards or add $2$ lizards to his tank. What is the minimum number of days necessary for Nicky to get rid of all of the lizards from his tank?
[b]p2.[/b] What is the maximum number of spheres with radius $1$ that can fit into a sphere with radius $2$?
[b]p3.[/b] A positive integer $x$ is sunny if $3x$ has more digits than $x$. If all sunny numbers are written in increasing order, what is the $50$th number written?
[b]p4.[/b] Quadrilateral $ABCD$ satisfies $AB = 4$, $BC = 5$, $DA = 4$, $\angle DAB = 60^o$, and $\angle ABC = 150^o$. Find the area of $ABCD$.
[b]p5. [/b]Totoro wants to cut a $3$ meter long bar of mixed metals into two parts with equal monetary value. The left meter is bronze, worth $10$ zoty per meter, the middle meter is silver, worth $25$ zoty per meter, and the right meter is gold, worth $40$ zoty per meter. How far, in meters, from the left should Totoro make the cut?
[b]p6.[/b] If the numbers $x_1, x_2, x_3, x_4$, and $x5$ are a permutation of the numbers $1, 2, 3, 4$, and $5$, compute the maximum possible value of $$|x_1 - x_2| + |x_2 - x_3| + |x_3 - x_4| + |x_4 - x_5|.$$
[b]p7.[/b] In a $3 \times 4$ grid of $12$ squares, find the number of paths from the top left corner to the bottom right corner that satisfy the following two properties:
$\bullet$ The path passes through each square exactly once.
$\bullet$ Consecutive squares share a side.
Two paths are considered distinct if and only if the order in which the twelve squares are visited is different. For instance, in the diagram below, the two paths drawn are considered the same.
[img]https://cdn.artofproblemsolving.com/attachments/7/a/bb3471bbde1a8f58a61d9dd69c8527cfece05a.png[/img]
[b]p8.[/b] Scott, Demi, and Alex are writing a computer program that is $25$ ines long. Since they are working together on one computer, only one person may type at a time. To encourage collaboration, no person can type two lines in a row, and everyone must type something. If Scott takes $10$ seconds to type one line, Demi takes $15$ seconds, and Alex takes $20$ seconds, at least how long, in seconds, will it take them to finish the program?
[b]p9.[/b] A hand of four cards of the form $(c, c, c + 1, c + 1)$ is called a tractor. Vinjai has a deck consisting of four of each of the numbers $7$, $8$, $9$ and $10$. If Vinjai shuffles and draws four cards from his deck, compute the probability that they form a tractor.
[b]p10. [/b]The parabola $y = 2x^2$ is the wall of a fortress. Totoro is located at $(0, 4)$ and fires a cannonball in a straight line at the closest point on the wall. Compute the y-coordinate of the point on the wall that the cannonball hits.
[b]p11. [/b]How many ways are there to color the squares of a $10$ by $10$ grid with black and white such that in each row and each column there are exactly two black squares and between the two black squares in a given row or column there are exactly [b]4[/b] white squares? Two configurations that are the same under rotations or reflections are considered different.
[b]p12.[/b] In rectangle $ABCD$, points $E$ and $F$ are on sides $AB$ and $CD$, respectively, such that $AE = CF > AD$ and $\angle CED = 90^o$. Lines $AF, BF, CE$ and $DE$ enclose a rectangle whose area is $24\%$ of the area of $ABCD$. Compute $\frac{BF}{CE}$ .
[b]p13.[/b] Link cuts trees in order to complete a quest. He must cut $3$ Fenwick trees, $3$ Splay trees and $3$ KD trees. If he must also cut 3 trees of the same type in a row at some point during his quest, in how many ways can he cut the trees and complete the quest? (Trees of the same type are indistinguishable.)
[b]p14.[/b] Find all ordered pairs (a, b) of positive integers such that $\sqrt{64a + b^2} + 8 = 8\sqrt{a} + b$.
[b]p15.[/b] Let $ABCDE$ be a convex pentagon such that $\angle ABC = \angle BCD = 108^o$, $\angle CDE = 168^o$ and $AB =BC = CD = DE$. Find the measure of $\angle AEB$
PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].