This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

1953 AMC 12/AHSME, 40

Tags:
The negation of the statement "all men are honest," is: $ \textbf{(A)}\ \text{no men are honest} \qquad\textbf{(B)}\ \text{all men are dishonest} \\ \textbf{(C)}\ \text{some men are dishonest} \qquad\textbf{(D)}\ \text{no men are dishonest} \\ \textbf{(E)}\ \text{some men are honest}$

1991 AIME Problems, 10

Two three-letter strings, $aaa$ and $bbb$, are transmitted electronically. Each string is sent letter by letter. Due to faulty equipment, each of the six letters has a 1/3 chance of being received incorrectly, as an $a$ when it should have been a $b$, or as a $b$ when it should be an $a$. However, whether a given letter is received correctly or incorrectly is independent of the reception of any other letter. Let $S_a$ be the three-letter string received when $aaa$ is transmitted and let $S_b$ be the three-letter string received when $bbb$ is transmitted. Let $p$ be the probability that $S_a$ comes before $S_b$ in alphabetical order. When $p$ is written as a fraction in lowest terms, what is its numerator?

1988 French Mathematical Olympiad, Problem 4

Tags: geometry
A circle $\mathcal C$ and five distinct points $M_1,M_2,M_3,M_4$ and $M$ on $\mathcal C$ are given in the plane. Prove that the product of the distances from $M$ to lines $M_1M_2$ and $M_3M_4$ is equal to the product of the distances from $M$ to the lines $M_1M_3$ and $M_2M_4$. What can one deduce for $2n+1$ distinct points $M_1,\ldots,M_{2n},M$ on $\mathcal C$?

2014 BMT Spring, 2

Find the number of $5$-digit $n$, s.t. every digit of $n$ is either $0$, $1$, $3$, or $4$, and $n$ is divisible by $15$.

2007 All-Russian Olympiad Regional Round, 8.5

There are $ 11$ coins, which are indistinguishable by sight. Nevertheless, among them there are $ 10$ geniune coins ( of weight $ 20$ g each) and one counterfeit (of weight $ 21$ g). You have a two-pan scale which is blanced when the weight in the left-hand pan is twice as much as the weight in the right-hand one. Using this scale only, find the false coin by three weighings.

2021 Bundeswettbewerb Mathematik, 2

The fraction $\frac{3}{10}$ can be written as a sum of two reciprocals in exactly two ways: \[\frac{3}{10}=\frac{1}{5}+\frac{1}{10}=\frac{1}{4}+\frac{1}{20}\] a) In how many ways can $\frac{3}{2021}$ be written as a sum of two reciprocals? b) Is there a positive integer $n$ not divisible by $3$ with the property that $\frac{3}{n}$ can be written as a sum of two reciprocals in exactly $2021$ ways?

2005 Iran MO (3rd Round), 1

Tags: limit , rotation , geometry
An airplane wants to go from a point on the equator, and at each moment it will go to the northeast with speed $v$. Suppose the radius of earth is $R$. a) Will the airplane reach to the north pole? If yes how long it will take to reach the north pole? b) Will the airplne rotate finitely many times around the north pole? If yes how many times?

Kvant 2022, M2685

Let $ABCD$ be a tetrahedron and suppose that $M$ is a point inside it such that $\angle MAD=\angle MBC$ and $\angle MDB=\angle MCA$. Prove that $$MA\cdot MB+MC\cdot MD<\max(AD\cdot BC,AC\cdot BD).$$

2018 IMAR Test, 1

Tags: locus , geometry
Let $ABC$ be a triangle whose angle at $A$ is right, and let $D$ be the foot of the altitude from $A$. A variable point $M$ traces the interior of the minor arc $AB$ of the circle $ABC$. The internal bisector of the angle $DAM$ crosses $CM$ at $N$. The line through $N$ and perpendicular to $CM$ crosses the line $AD$ at $P$. Determine the locus of the point where the line $BN$ crosses the line $CP$. [i]* * *[/i]

1978 IMO Longlists, 39

$A$ is a $2m$-digit positive integer each of whose digits is $1$. $B$ is an $m$-digit positive integer each of whose digits is $4$. Prove that $A+B +1$ is a perfect square.

2006 Oral Moscow Geometry Olympiad, 3

Tags: locus , centroid , geometry
Two non-rolling circles $C_1$ and $C_2$ with centers $O_1$ and $O_2$ and radii $2R$ and $R$, respectively, are given on the plane. Find the locus of the centers of gravity of triangles in which one vertex lies on $C_1$ and the other two lie on $C_2$. (B. Frenkin)

DMM Individual Rounds, 2017

[b]p1.[/b] How many subsets of $\{D,U,K,E\}$ have an odd number of elements? [b]p2.[/b] Find the coefficient of $x^{12}$ in $(1 + x^2 + x^4 +... + x^{28})(1 + x + x^2 + ...+ x^{14})^2$. [b]p3.[/b] How many $4$-digit numbers have their digits in non-decreasing order from left to right? [b]p4.[/b] A dodecahedron (a polyhedron with $12$ faces, each a regular pentagon) is projected orthogonally onto a plane parallel to one of its faces to form a polygon. Find the measure (in degrees) of the largest interior angle of this polygon. [b]p5.[/b] Justin is back with a $6\times 6$ grid made of $36$ colorless squares. Dr. Kraines wants him to color some squares such that $\bullet$ Each row and column of the grid must have at least one colored square $\bullet$ For each colored square, there must be another colored square on the same row or column What is the minimum number of squares that Justin will have to color? [b]p6.[/b] Inside a circle $C$, we have three equal circles $C_1$, $C_2$, $C_3$, which are pairwise externally tangent to each other and all internally tangent to $C$. What is the ratio of the area of $C_1$ to the area of $C$? [b]p7.[/b] There are $3$ different paths between the Duke Chapel and the Physics building. $6$ students are heading towards the Physics building for a class, so they split into $3$ pairs and each pair takes a separate path from the Chapel. After class, they again split into $3$ pairs and take separate paths back. Find the number of possible scenarios where each student's companion on the way there is different from their companion on the way back. [b]p8.[/b] Let $a_n$ be a sequence that satisfies the recurrence relation $$a_na_{n+2} =\frac{\cos (3a_{n+1})}{\cos (a_{n+1})[2 \cos(2a_{n+1}) - 1]}a_{n+1}$$ with $a_1 = 2$ and $a_2 = 3$. Find the value of $2018a_{2017}$. [b]p9.[/b] Let $f(x)$ be a polynomial with minimum degree, integer coefficients, and leading coefficient of $1$ that satisfies $f(\sqrt7 +\sqrt{13})= 0$. What is the value of $f(10)$? [b]p10.[/b] $1024$ Duke students, indexed $1$ to $1024$, are having a chat. For each $1 \le i \le 1023$, student $i$ claims that student $2^{\lfloor \log_2 i\rfloor +1}$ has a girlfriend. ($\lfloor x \rfloor$ is the greatest integer less than or equal to $x$.) Given that exactly $201$ people are lying, find the index of the $61$st liar (ordered by index from smallest to largest). PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2022 Irish Math Olympiad, 4

Tags: function , algebra
4. Let $\mathbb{N}$ denote the strictly positive integers. A function $f$ : $\mathbb{N}$ $\to$ $\mathbb{N}$ has the following properties which hold for all $n \in$ $\mathbb{N}$: a) $f(n)$ < $f(n+1)$; b) $f(f(f(n)))$ = 4$n$ Find $f(2022)$.

1998 Czech and Slovak Match, 2

A polynomial $P(x)$ of degree $n \ge 5$ with integer coefficients has $n$ distinct integer roots, one of which is $0$. Find all integer roots of the polynomial $P(P(x))$.

2002 Olympic Revenge, 6

Let \(p\) a prime number, and \(N\) the number of matrices \(p \times p\) \[\begin{array}{cccc} a_{11} & a_{12} & \ldots & a_{1p}\\ a_{21} & a_{22} & \ldots & a_{2p}\\ \vdots & \vdots & \ddots & \vdots \\ a_{p1} & a_{p2} & \ldots & a_{pp} \end{array}\] such that \(a_{ij} \in \{0,1,2,\ldots,p\} \) and if \(i \leq i^\prime\) and \(j \leq j^\prime\), then \(a_{ij} \leq a_{i^\prime j^\prime}\). Find \(N \pmod{p}\).

2007 Pre-Preparation Course Examination, 8

Let $m,n,k$ be positive integers and $1+m+n \sqrt 3=(2+ \sqrt 3)^{2k+1}$. Prove that $m$ is a perfect square.

2024 German National Olympiad, 1

The five real numbers $v,w,x,y,s$ satisfy the system of equations \begin{align*} v&=wx+ys,\\ v^2&=w^2x+y^2s,\\ v^3&=w^3x+y^3s. \end{align*} Show that at least two of them are equal.

1974 Putnam, B6

Tags: set , modulo , subset
For a set with $n$ elements, how many subsets are there whose cardinality is respectively $\equiv 0$ (mod $3$), $\equiv 1$ (mod $3$), $ \equiv 2$ (mod $3$)? In other words, calculate $$s_{i,n}= \sum_{k\equiv i \;(\text{mod} \;3)} \binom{n}{k}$$ for $i=0,1,2$. Your result should be strong enough to permit direct evaluation of the numbers $s_{i,n}$ and to show clearly the relationship of $s_{0,n}, s_{1,n}$ and $s_{2,n}$ to each other for all positive integers $n$. In particular, show the relationships among these three sums for $n = 1000$.

1973 AMC 12/AHSME, 20

A cowboy is 4 miles south of a stream which flows due east. He is also 8 miles west and 7 miles north of his cabin. He wishes to water his horse at the stream and return home. The shortest distance (in miles) he can travel and accomplish this is $ \textbf{(A)}\ 4\plus{}\sqrt{185} \qquad \textbf{(B)}\ 16 \qquad \textbf{(C)}\ 17 \qquad \textbf{(D)}\ 18 \qquad \textbf{(E)}\ \sqrt{32}\plus{}\sqrt{137}$

2016 HMIC, 3

Denote by $\mathbb{N}$ the positive integers. Let $f:\mathbb{N} \rightarrow \mathbb{N}$ be a function such that, for any $w,x,y,z \in \mathbb{N}$, \[ f(f(f(z)))f(wxf(yf(z)))=z^{2}f(xf(y))f(w). \] Show that $f(n!) \ge n!$ for every positive integer $n$. [i]Pakawut Jiradilok[/i]

1997 IMO Shortlist, 4

An $ n \times n$ matrix whose entries come from the set $ S \equal{} \{1, 2, \ldots , 2n \minus{} 1\}$ is called a [i]silver matrix[/i] if, for each $ i \equal{} 1, 2, \ldots , n$, the $ i$-th row and the $ i$-th column together contain all elements of $ S$. Show that: (a) there is no silver matrix for $ n \equal{} 1997$; (b) silver matrices exist for infinitely many values of $ n$.

1997 India National Olympiad, 3

If $a,b,c$ are three real numbers and \[ a + \dfrac{1}{b} = b + \dfrac{1}{c} = c + \dfrac{1}{a} = t \] for some real number $t$, prove that $abc + t = 0 .$

2002 Croatia National Olympiad, Problem 1

In triangle $ABC$, the angles $\alpha=\angle A$ and $\beta=\angle B$ are acute. The isosceles triangle $ACD$ and $BCD$ with the bases $AC$ and $BC$ and $\angle ADC=\beta$, $\angle BEC=\alpha$ are constructed in the exterior of the triangle $ABC$. Let $O$ be the circumcenter of $\triangle ABC$. Prove that $DO+EO$ equals the perimeter of triangle $ABC$ if and only if $\angle ACB$ is right.

The Golden Digits 2024, P3

Let $a_1<a_2 \dots <a_n$ be positive integers, with $n\geq 2$. An invisible frog lies on the real line, at a positive integer point. Initially, the hunter chooses a number $k$, and then, once every minute, he can check if the frog currently lies in one of $k$ points of his choosing, after which the frog goes from its point $x$ to one of the points $x+a_1, x+a_2 \dots x+a_n$. Based on the values of $a_1, a_2 \dots a_n$, what is the smallest value of $k$ such that the hunter can guarantee to find the frog within a finite number of minutes, no matter where it initially started? [i]Proposed by David Anghel[/i]

2000 National Olympiad First Round, 13

Let $d$ be one of the common tangent lines of externally tangent circles $k_1$ and $k_2$. $d$ touches $k_1$ at $A$. Let $[AB]$ be a diameter of $k_1$. The tangent from $B$ to $k_2$ touches $k_2$ at $C$. If $|AB|=8$ and the diameter of $k_2$ is $7$, then what is $|BC|$? $ \textbf{(A)}\ 7 \qquad\textbf{(B)}\ 6\sqrt 2 \qquad\textbf{(C)}\ 10 \qquad\textbf{(D)}\ 8 \qquad\textbf{(E)}\ 5\sqrt 3 $