This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

LMT Guts Rounds, 2

Tags:
If you increase a number $X$ by $20\%,$ you get $Y.$ By what percent must you decrease $Y$ to get $X?$

2020 AMC 10, 15

Tags:
Steve wrote the digits $1$, $2$, $3$, $4$, and $5$ in order repeatedly from left to right, forming a list of $10,000$ digits, beginning $123451234512\ldots.$ He then erased every third digit from his list (that is, the $3$rd, $6$th, $9$th, $\ldots$ digits from the left), then erased every fourth digit from the resulting list (that is, the $4$th, $8$th, $12$th, $\ldots$ digits from the left in what remained), and then erased every fifth digit from what remained at that point. What is the sum of the three digits that were then in the positions $2019, 2020, 2021$? $\textbf{(A) } 7 \qquad\textbf{(B) } 9 \qquad\textbf{(C) } 10 \qquad\textbf{(D) } 11 \qquad\textbf{(E) } 12$

2015 Caucasus Mathematical Olympiad, 5

What is the smallest number of $3$-cell corners needed to be painted in a $6\times 6$ square so that it was impossible to paint more than one corner of it? (The painted corners should not overlap.)

1998 Bundeswettbewerb Mathematik, 3

Let F be the midpoint of side BC or triangle ABC. Construct isosceles right triangles ABD and ACE externally on sides AB and AC with the right angles at D and E respectively. Show that DEF is an isosceles right triangle.

2012 Centers of Excellency of Suceava, 1

Let be a natural number $ n\ge 2, $ a group $ G $ and two elements of it $ e_1,e_2 $ such that $ e_2e_1x=xe_2e_1, $ for any element $ x $ of $ G. $ Prove that $ \left( e_1xe_2 \right)^n =e_1x^ne_2, $ for any element $ x $ of $ G, $ if and only if $ e_2e_1=\left( e_2e_1\right)^n. $ [i]Ion Bursuc[/i]

2023 Math Prize for Girls Problems, 9

Tags:
The ring shown below is made out of 18 congruent regular hexagons. How many ways are there to tile the ring using tiles that consist of two hexagons, each congruent to any one of the 18 in the design, joined edge-to-edge? (The central hexagon, in black, is not to be covered with a tile and the ring cannot be rotated or reflected.)

2023 Thailand TST, 2

Tags: geometry
Let $ABC$ be a triangle and $\ell_1,\ell_2$ be two parallel lines. Let $\ell_i$ intersects line $BC,CA,AB$ at $X_i,Y_i,Z_i$, respectively. Let $\Delta_i$ be the triangle formed by the line passed through $X_i$ and perpendicular to $BC$, the line passed through $Y_i$ and perpendicular to $CA$, and the line passed through $Z_i$ and perpendicular to $AB$. Prove that the circumcircles of $\Delta_1$ and $\Delta_2$ are tangent.

2021 USMCA, 21

Tags:
Sarah has five rings (numbered 1 through 5), each with ten rungs labeled $1$ through $10$. Rung $i$ is adjacent to rung $i+1$ for $1 \le i \le 9$, and rung $10$ is adjacent to rung $1$. How many ways can Sarah paint some (possibly none) of the rungs red such that in each ring, the red rungs form a contiguous block, and the total number of red rungs across the five rings is divisible by $11$? (For example, Sarah can paint rungs $8, 9, 10, 1, 2$ on ring $1$, rungs $3, 4, 5$ on ring $2$, no rungs on rings $3$ and $4$, and rungs $1,2,3$ on ring $5$.)

2013 Sharygin Geometry Olympiad, 3

Let $ABC$ be a right-angled triangle ($\angle B = 90^\circ$). The excircle inscribed into the angle $A$ touches the extensions of the sides $AB$, $AC$ at points $A_1, A_2$ respectively; points $C_1, C_2$ are defined similarly. Prove that the perpendiculars from $A, B, C$ to $C_1C_2, A_1C_1, A_1A_2$ respectively, concur.

2006 Germany Team Selection Test, 3

Consider a $m\times n$ rectangular board consisting of $mn$ unit squares. Two of its unit squares are called [i]adjacent[/i] if they have a common edge, and a [i]path[/i] is a sequence of unit squares in which any two consecutive squares are adjacent. Two parths are called [i]non-intersecting[/i] if they don't share any common squares. Each unit square of the rectangular board can be colored black or white. We speak of a [i]coloring[/i] of the board if all its $mn$ unit squares are colored. Let $N$ be the number of colorings of the board such that there exists at least one black path from the left edge of the board to its right edge. Let $M$ be the number of colorings of the board for which there exist at least two non-intersecting black paths from the left edge of the board to its right edge. Prove that $N^{2}\geq M\cdot 2^{mn}$.

2024 All-Russian Olympiad Regional Round, 10.3

There are $100$ white points on a circle. Asya and Borya play the following game: they alternate, starting with Asya, coloring a white point in green or blue. Asya wants to obtain as much as possible pairs of adjacent points of distinct colors, while Borya wants these pairs to be as less as possible. What is the maximal number of such pairs Asya can guarantee to obtain, no matter how Borya plays.

1991 AMC 12/AHSME, 11

Tags:
Jack and Jill run $10$ kilometers. They start at the same point, run $5$ kilometers up a hill, and return to the starting point by the same route. Jack has a $10$ minute head start and runs at the rate of $15$ km/hr uphill and $20$ km/hr downhill. Jill runs $16$ km/hr uphill and $22$ km/hr downhill. How far from the top of the hill are they when they pass going in opposite directions? $ \textbf{(A)}\ \frac{5}{4}\ km\qquad\textbf{(B)}\ \frac{35}{27}\ km\qquad\textbf{(C)}\ \frac{27}{20}\ km\qquad\textbf{(D)}\ \frac{7}{3}\ km\qquad\textbf{(E)}\ \frac{28}{9}\ km $

IV Soros Olympiad 1997 - 98 (Russia), 10.10

A circle touches the extensions of sides $CA$ and $CB$ of triangle $ABC$, and also touches side $AB$ of this triangle at point $P$. Prove that the radius of the circle tangent to segments $AP$, $CP$ and the circumscribed circle of this triangle is equal to the radius of the inscribed circle in this triangle.

2018 Caucasus Mathematical Olympiad, 1

A tetrahedron is given. Determine whether it is possible to put some 10 consecutive positive integers at 4 vertices and at 6 midpoints of the edges so that the number at the midpoint of each edge is equal to the arithmetic mean of two numbers at the endpoints of this edge.

1991 National High School Mathematics League, 3

Let $a_n$ be the number of such numbers $N$: sum of all digits of $N$ is $n$, and each digit can only be $1,3,4$. Prove that $a_{2n}$ is a perfect square for all $n\in\mathbb{Z}_+$.

2000 AIME Problems, 12

The points $A, B$ and $C$ lie on the surface of a sphere with center $O$ and radius 20. It is given that $AB=13, BC=14, CA=15,$ and that the distance from $O$ to triangle $ABC$ is $\frac{m\sqrt{n}}k,$ where $m, n,$ and $k$ are positive integers, $m$ and $k$ are relatively prime, and $n$ is not divisible by the square of any prime. Find $m+n+k.$

1983 Polish MO Finals, 6

Prove that if all dihedral angles of a tetrahedron are acute, then all its faces are acute-angled triangles.

2013 Math Prize For Girls Problems, 3

Tags:
Let $S_1$, $S_2$, $\dots$, $S_{125}$ be 125 sets of 5 numbers each, comprising $625$ distinct numbers. Let $m_i$ be the median of $S_i$. Let $M$ be the median of $m_1$, $m_2$, $\dots$, $m_{125}$. What is the greatest possible number of the 625 numbers that are less than $M$?

2017 Saudi Arabia BMO TST, 2

Let $ABC$ be an acute triangle with $AT, AS$ respectively are the internal, external angle bisector of $ABC$ and $T, S \in BC$. On the circle with diameter $TS$, take an arbitrary point $P$ that lies inside the triangle ABC. Denote $D, E, F, I$ as the incenter of triangle $PBC, PCA, PAB, ABC$. Prove that four lines $AD, BE, CF$ and $IP$ are concurrent.

Novosibirsk Oral Geo Oly VIII, 2021.5

On the legs $AC$ and $BC$ of an isosceles right-angled triangle with a right angle $C$, points $D$ and $E$ are taken, respectively, so that $CD = CE$. Perpendiculars on line $AE$ from points $C$ and $D$ intersect segment $AB$ at points $P$ and $Q$, respectively. Prove that $BP = PQ$.

1964 Poland - Second Round, 1

Prove that if $ n $ is a natural number and the angle $ \alpha $ is not a multiple of $ \frac{180^{\circ}}{2^n} $, then $$\frac{1}{\sin 2\alpha} + \frac{1}{\sin 4\alpha} + \frac{1}{\sin 8\alpha} + ... + = ctg \alpha - ctg 2^n \alpha.$$

2010 Regional Olympiad of Mexico Northeast, 2

Of all the fractions $\frac{x}{y}$ that satisfy $$\frac{41}{2010}<\frac{x}{y}<\frac{1}{49}$$ find the one with the smallest denominator.

2016 NIMO Problems, 7

Tags: geometry
Let $A$ and $B$ be points with $AB=12$. A point $P$ in the plane of $A$ and $B$ is $\textit{special}$ if there exist points $X, Y$ such that [list] [*]$P$ lies on segment $XY$, [*]$PX : PY = 4 : 7$, and [*]the circumcircles of $AXY$ and $BXY$ are both tangent to line $AB$. [/list] A point $P$ that is not special is called $\textit{boring}$. Compute the smallest integer $n$ such that any two boring points have distance less than $\sqrt{n/10}$ from each other. [i]Proposed by Michael Ren[/i]

2012 NIMO Problems, 2

Tags:
A [i]normal magic square[/i] of order $n$ is an arrangement of the integers from $1$ to $n^2$ in a square such that the $n$ numbers in each row, each column, and each of the two diagonals sum to a constant, called the [i]magic sum[/i] of the magic square. Compute the magic sum of a normal magic square of order $8$.

2019 IMO Shortlist, G3

Tags: geometry
In triangle $ABC$, point $A_1$ lies on side $BC$ and point $B_1$ lies on side $AC$. Let $P$ and $Q$ be points on segments $AA_1$ and $BB_1$, respectively, such that $PQ$ is parallel to $AB$. Let $P_1$ be a point on line $PB_1$, such that $B_1$ lies strictly between $P$ and $P_1$, and $\angle PP_1C=\angle BAC$. Similarly, let $Q_1$ be the point on line $QA_1$, such that $A_1$ lies strictly between $Q$ and $Q_1$, and $\angle CQ_1Q=\angle CBA$. Prove that points $P,Q,P_1$, and $Q_1$ are concyclic. [i]Proposed by Anton Trygub, Ukraine[/i]