This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

1996 AIME Problems, 9

A bored student walks down a hall that contains a row of closed lockers, numbered 1 to 1024. He opens the locker numbered 1, and then alternates between skipping and opening each closed locker thereafter. When he reaches the end of the hall, the student turns around and starts back. He opens the first closed locker he encounters, and then alternates between skipping and opening each closed locker thereafter. The student continues wandering back and forth in this manner until every locker is open. What is the number of the last locker he opens?

JOM 2015 Shortlist, G7

Tags: geometry
Let $ABC$ be an acute triangle. Let $H_A,H_B,H_C$ be points on $BC,AC,AB$ respectively such that $AH_A\perp BC, BH_B\perp AC, CH_C\perp AB$. Let the circumcircles $AH_BH_C,BH_AH_C,CH_AH_B$ be $\omega_A,\omega_B,\omega_C$ with circumcenters $O_A,O_B,O_C$ respectively and define $O_AB\cap \omega_B=P_{AB}\neq B$. Define $P_{AC},P_{BA},P_{BC},P_{CA},P_{CB}$ similarly. Define circles $\omega_{AB},\omega_{AC}$ to be $O_AP_{AB}H_C,O_AP_{AC}H_B$ respectively. Define circles $\omega_{BA},\omega_{BC},\omega_{CA},\omega_{CB}$ similarly. Prove that there are $6$ pairs of tangent circles in the $6$ circles of the form $\omega_{xy}$.

2000 France Team Selection Test, 1

Points $P,Q,R,S$ lie on a circle and $\angle PSR$ is right. $H,K$ are the projections of $Q$ on lines $PR,PS$. Prove that $HK$ bisects segment $ QS$.

CNCM Online Round 1, 3

Tags:
Define $S(N)$ to be the sum of the digits of $N$ when it is written in base $10$, and take $S^k(N) = S(S(\dots(N)\dots))$ with $k$ applications of $S$. The \textit{stability} of a number $N$ is defined to be the smallest positive integer $K$ where $S^K(N) = S^{K+1}(N) = S^{K+2}(N) = \dots$. Let $T_3$ be the set of all natural numbers with stability $3$. Compute the sum of the two least entries of $T_3$. Proposed by Albert Wang (awang11)

1998 Slovenia National Olympiad, Problem 1

Find all integers $x,y$ which satisfy the equation $xy=20-3x+y$.

2019 Balkan MO Shortlist, C1

100 couples are invited to a traditional Modolvan dance. The $200$ people stand in a line, and then in a $\textit{step}$, (not necessarily adjacent) many swap positions. Find the least $C$ such that whatever the initial order, they can arrive at an ordering where everyone is dancing next to their partner in at most $C$ steps.

2014 Contests, 2

A segment $AB$ is given in (Euclidean) plane. Consider all triangles $XYZ$ such, that $X$ is an inner point of $AB$, triangles $XBY$ and $XZA$ are similar (in this order of vertices), and points $A, B, Y, Z$ lie on a circle in this order. Find the locus of midpoints of all such segments $YZ$. (Day 1, 2nd problem authors: Michal Rolínek, Jaroslav Švrček)

2019 Macedonia National Olympiad, 1

In an acute-angled triangle $ABC$, point $M$ is the midpoint of side $BC$ and the centers of the $M$- excircles of triangles $AMB$ and $AMC$ are $D$ and $E$, respectively. The circumcircle of triangle $ABD$ intersects line $BC$ at points $B$ and $F$. The circumcircle of triangle $ACE$ intersects line $BC$ at points $C$ and $G$. Prove that $BF\hspace{0.25mm} = \hspace{0.25mm} CG$ .

2021 JHMT HS, 7

A number line with the integers $1$ through $20,$ from left to right, is drawn. Ten coins are placed along this number line, with one coin at each odd number on the line. A legal move consists of moving one coin from its current position to a position of strictly greater value on the number line that is not already occupied by another coin. How many ways can we perform two legal moves in sequence, starting from the initial position of the coins (different two-move sequences that result in the same position are considered distinct)?

2001 AMC 8, 25

Tags: search
There are 24 four-digit whole numbers that use each of the four digits 2, 4, 5 and 7 exactly once. Only one of these four-digit numbers is a multiple of another one. Which of the following is it? $ \text{(A)}\ 5724\qquad\text{(B)}\ 7245\qquad\text{(C)}\ 7254\qquad\text{(D)}\ 7425\qquad\text{(E)}\ 7542 $

2024 APMO, 5

Tags: geometry
Line $\ell$ intersects sides $BC$ and $AD$ of cyclic quadrilateral $ABCD$ in its interior points $R$ and $S$, respectively, and intersects ray $DC$ beyond point $C$ at $Q$, and ray $BA$ beyond point $A$ at $P$. Circumcircles of the triangles $QCR$ and $QDS$ intersect at $N \neq Q$, while circumcircles of the triangles $PAS$ and $PBR$ intersect at $M\neq P$. Let lines $MP$ and $NQ$ meet at point $X$, lines $AB$ and $CD$ meet at point $K$ and lines $BC$ and $AD$ meet at point $L$. Prove that point $X$ lies on line $KL$.

2022 Girls in Math at Yale, R4

[b]p10 [/b]Kathy has two positive real numbers, $a$ and $b$. She mistakenly writes $$\log (a + b) = \log (a) + \log( b),$$ but miraculously, she finds that for her combination of $a$ and $b$, the equality holds. If $a = 2022b$, then $b = \frac{p}{q}$ , for positive integers $p, q$ where $gcd(p, q) = 1$. Find $p + q$. [b]p11[/b] Points $X$ and $Y$ lie on sides $AB$ and $BC$ of triangle $ABC$, respectively. Ray $\overrightarrow{XY}$ is extended to point $Z$ such that $A, C$, and $Z$ are collinear, in that order. If triangle$ ABZ$ is isosceles and triangle $CYZ$ is equilateral, then the possible values of $\angle ZXB$ lie in the interval $I = (a^o, b^o)$, such that $0 \le a, b \le 360$ and such that $a$ is as large as possible and $b$ is as small as possible. Find $a + b$. [b]p12[/b] Let $S = \{(a, b) | 0 \le a, b \le 3, a$ and $b$ are integers $\}$. In other words, $S$ is the set of points in the coordinate plane with integer coordinates between $0$ and $3$, inclusive. Prair selects four distinct points in $S$, for each selected point, she draws lines with slope $1$ and slope $-1$ passing through that point. Given that each point in $S$ lies on at least one line Prair drew, how many ways could she have selected those four points?

1973 Putnam, A1

(a) Let $ABC$ be any triangle. Let $X, Y, Z$ be points on the sides $BC, CA, AB$ respectively. Suppose that $BX \leq XC, CY \leq YA, AZ \leq ZB$. Show that the area of the triangle $XYZ$ $\geq 1\slash 4$ times the area of $ABC.$ (b) Let $ABC$ be any triangle, and let $X, Y, Z$ be points on the sides $BC, CA, AB$ respectively. Using (a) or by any other method, show: One of the three corner triangles $AZY, BXZ, CYX$ has an area $\leq$ area of the triangle $XYZ.$

2021 Indonesia TST, G

The circles $k_1$ and $k_2$ intersect at points $A$ and $B$, and $k_1$ passes through the center $O$ of the circle $k_2$. The line $p$ intersects $k_1$ at the points $K ,O$ and $k_2$ at the points $L ,M$ so that $L$ lies between $K$ and $O$. The point $P$ is the projection of $L$ on the line $AB$. Prove that $KP$ is parallel to the median of triangle $ABM$ drawn from the vertex $M$.

2023 VN Math Olympiad For High School Students, Problem 11

Tags: ratio , geometry
Given a triangle $ABC$ inscribed in $(O)$ with $2$ symmedians $AD, CF(D,F$ are on the sides $BC, AB,$ respectively$).$ The ray $DF$ intersects $(O)$ at $P.$ The line passing through $P$ and perpendicular to $OA$ intersects $AB,AC$ at $Q,R,$ respectively$.$ Compute the ratio $\dfrac{PR}{PQ}.$

2022 Nigerian Senior MO Round 2, Problem 5

For how many paths comsisting of a sequence of horizontal and/or vertical line segments, with each segment connecting a pair of adjacent letters in the diagram below, is the word $\textup{OLYMPIADS}$ spelled out as the path is traversed from beginning to end? $\begin{tabular}{ccccccccccccccccc}& & & & & & & & O & & & & & & & &\\ & & & & & & & O & L & O & & & & & & &\\ & & & & & & O & L & Y & L & O & & & & & &\\ & & & & & O & L & Y & M & Y & L & O & & & & &\\ & & & & O & L & Y & M & P & M & Y & L & O & & & &\\ & & & O & L & Y & M & P & I & P & M & Y & L & O & & &\\ & & O & L & Y & M & P & I & A & I & P & M & Y & L & O & &\\ & O & L & Y & M & P & I & A & D & A & I & P & M & Y & L & O &\\ O & L & Y & M & P & I & A & D & S & D & A & I & P & M & Y & L & O \end{tabular}$

2016 Online Math Open Problems, 13

Tags:
Let $A_1B_1C_1$ be a triangle with $A_1B_1 = 16, B_1C_1 = 14,$ and $C_1A_1 = 10$. Given a positive integer $i$ and a triangle $A_iB_iC_i$ with circumcenter $O_i$, define triangle $A_{i+1}B_{i+1}C_{i+1}$ in the following way: (a) $A_{i+1}$ is on side $B_iC_i$ such that $C_iA_{i+1}=2B_iA_{i+1}$. (b) $B_{i+1}\neq C_i$ is the intersection of line $A_iC_i$ with the circumcircle of $O_iA_{i+1}C_i$. (c) $C_{i+1}\neq B_i$ is the intersection of line $A_iB_i$ with the circumcircle of $O_iA_{i+1}B_i$. Find \[ \left(\sum_{i = 1}^\infty [A_iB_iC_i] \right)^2. \] Note: $[K]$ denotes the area of $K$. [i]Proposed by Yang Liu[/i]

II Soros Olympiad 1995 - 96 (Russia), 11.9

Tags: algebra
Solve the equation $$x(2^{1-2x}-1)=2^{x-2x^2}-1$$

Kyiv City MO Juniors 2003+ geometry, 2008.9.5

Tags: angle , geometry
In the triangle $ABC$ on the side $AC$ the points $F$ and $L$ are selected so that $AF = LC <\frac{1}{2} AC$. Find the angle $ \angle FBL $ if $A {{B} ^ {2}} + B {{C} ^ {2}} = A {{L} ^ {2}} + L {{C } ^ {2}}$ (Zhidkov Sergey)

2018 Iran Team Selection Test, 2

Find the maximum possible value of $k$ for which there exist distinct reals $x_1,x_2,\ldots ,x_k $ greater than $1$ such that for all $1 \leq i, j \leq k$, $$x_i^{\lfloor x_j \rfloor }= x_j^{\lfloor x_i\rfloor}.$$ [i]Proposed by Morteza Saghafian[/i]

2017 Silk Road, 1

On an infinite white checkered sheet, a square $Q$ of size $12$ × $12$ is selected. Petya wants to paint some (not necessarily all!) cells of the square with seven colors of the rainbow (each cell is just one color) so that no two of the $288$ three-cell rectangles whose centers lie in $Q$ are the same color. Will he succeed in doing this? (Two three-celled rectangles are painted the same if one of them can be moved and possibly rotated so that each cell of it is overlaid on the cell of the second rectangle having the same color.) (Bogdanov. I)

2017 Dutch IMO TST, 1

Tags: geometry
A circle $\omega$ with diameter $AK$ is given. The point $M$ lies in the interior of the circle, but not on $AK$. The line $AM$ intersects $\omega$ in $A$ and $Q$. The tangent to $\omega$ at $Q$ intersects the line through $M$ perpendicular to $AK$, at $P$. The point $L$ lies on $\omega$, and is such that $PL$ is tangent to $\omega$ and $L\neq Q$. Show that $K, L$, and $M$ are collinear.

1996 Romania National Olympiad, 3

Let $AB CD$ be a rectangle with $AB=1$. If $m ( \angle BDC) = 82^o30'$, compute the length of$ BD$ and the cosine of $82^o30'$.

2016 SGMO, Q5

Let $d_{m} (n)$ denote the last non-zero digit of $n$ in base $m$ where $m,n$ are naturals. Given distinct odd primes $p_1,p_2,\ldots,p_k$, show that there exists infinitely many natural $n$ such that $$d_{2p_i} (n!) \equiv 1 \pmod {p_i}$$ for all $i = 1,2,\ldots,k$.

1951 AMC 12/AHSME, 48

Tags: geometry , ratio
The area of a square inscribed in a semicircle is to the area of the square inscribed in the entire circle as: $ \textbf{(A)}\ 1: 2 \qquad\textbf{(B)}\ 2: 3 \qquad\textbf{(C)}\ 2: 5 \qquad\textbf{(D)}\ 3: 4 \qquad\textbf{(E)}\ 3: 5$