This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2014 Contests, 2

Let $f$ be the function defined by $f(x) = 4x(1 - x)$. Let $n$ be a positive integer. Prove that there exist distinct real numbers $x_1$, $x_2$, $\ldots\,$, $x_n$ such that $x_{i + 1} = f(x_i)$ for each integer $i$ with $1 \le i \le n - 1$, and such that $x_1 = f(x_n)$.

2003 National Olympiad First Round, 1

Let $ABC$ be a triangle such that $|AB|=7$, $|BC|=8$, $|AC|=6$. Let $D$ be the midpoint of side $[BC]$. If the circle through $A$, $B$ and $D$ cuts $AC$ at $A$ and $E$, what is $|AE|$? $ \textbf{(A)}\ \dfrac 23 \qquad\textbf{(B)}\ 1 \qquad\textbf{(C)}\ \dfrac 32 \qquad\textbf{(D)}\ 2 \qquad\textbf{(E)}\ 3 $

2013 Chile National Olympiad, 6

Juan must pay $4$ bills. He goes to an ATM, but doesn't remember the amount of the bills. Just know that a) Each account is a multiple of $1,000$ and is at least $4,000$. b) The accounts total 2$00, 000$. What is the least number of times Juan must use the ATM to make sure he can pay the bills with exact change without any excess money? The cashier has banknotes of $2, 000$, $5, 000$, $10, 000$, and $20,000$. Juan can decide how much money he asks the cashier each time, but you cannot decide how many bills of each type to give to the cashier.

2016 AMC 12/AHSME, 21

Tags:
Let $ABCD$ be a unit square. Let $Q_1$ be the midpoint of $\overline{CD}$. For $i=1,2,\dots,$ let $P_i$ be the intersection of $\overline{AQ_i}$ and $\overline{BD}$, and let $Q_{i+1}$ be the foot of the perpendicular from $P_i$ to $\overline{CD}$. What is $$\sum_{i=1}^{\infty} \text{Area of } \triangle DQ_i P_i \, ?$$ $\textbf{(A)}\ \frac{1}{6} \qquad \textbf{(B)}\ \frac{1}{4} \qquad \textbf{(C)}\ \frac{1}{3} \qquad \textbf{(D)}\ \frac{1}{2} \qquad \textbf{(E)}\ 1$

MOAA Team Rounds, TO1

The number $2020$ has three different prime factors. What is their sum?

1968 Putnam, B5

Let $S$ be the set of $2\times2$-matrices over $\mathbb{F}_{p}$ with trace $1$ and determinant $0$. Determine $|S|$.

2023 Brazil Team Selection Test, 3

Show that for all positive real numbers $a, b, c$, we have that $$\frac{a+b+c}{3}-\sqrt[3]{abc} \leq \max\{(\sqrt{a}-\sqrt{b})^2, (\sqrt{b}-\sqrt{c})^2, (\sqrt{c}-\sqrt{a})^2\}$$

2014 NIMO Problems, 3

In land of Nyemo, the unit of currency is called a [i]quack[/i]. The citizens use coins that are worth $1$, $5$, $25$, and $125$ quacks. How many ways can someone pay off $125$ quacks using these coins? [i]Proposed by Aaron Lin[/i]

1992 Baltic Way, 8

Find all integers satisfying the equation $ 2^x\cdot(4\minus{}x)\equal{}2x\plus{}4$.

2021 Purple Comet Problems, 1

Tags: geometry
The diagram below shows two concentric circles whose areas are $7$ and $53$ and a pair of perpendicular lines where one line contains diameters of both circles and the other is tangent to the smaller circle. Find the area of the shaded region. [img]https://cdn.artofproblemsolving.com/attachments/3/b/87cbb97a799686cf5dbec9dcd79b6b03e1995c.png[/img]

2017 Mediterranean Mathematics Olympiad, Problem 2

Tags: algebra
Determine the smallest integer $n$ for which there exist integers $x_1,\ldots,x_n$ and positive integers $a_1,\ldots,a_n$ so that \begin{align*} x_1+\cdots+x_n &=0,\\ a_1x_1+\cdots+a_nx_n&>0, \text{ and }\\ a_1^2x_1+\cdots+a_n^2x_n &<0. \end{align*}

1982 Swedish Mathematical Competition, 1

How many solutions does \[ x^2 - [x^2] = \left(x - [x]\right)^2 \] have satisfying $1 \leq x \leq n$?

2002 Tournament Of Towns, 3

Tags: geometry
Let $E$ and $F$ be the respective midpoints of $BC,CD$ of a convex quadrilateral $ABCD$. Segments $AE,AF,EF$ cut the quadrilateral into four triangles whose areas are four consecutive integers. Find the maximum possible area of $\Delta BAD$.

2014 Paenza, 1

Let $\{a_n\}_{n\geq 1}$ be a sequence of real numbers which satisfies the following relation: \[a_{n+1}=10^n a_n^2\] (a) Prove that if $a_1$ is small enough, then $\displaystyle\lim_{n\to\infty} a_n =0$. (b) Find all possible values of $a_1\in \mathbb{R}$, $a_1\geq 0$, such that $\displaystyle\lim_{n\to\infty} a_n =0$.

1967 Leningrad Math Olympiad, grade 7

[b]7.1[/b] Construct a trapezoid given four sides. [b]7.2[/b] Prove that $$(1 + x + x^2 + ...+ x^{100})(1 + x^{102}) - 102x^{101} \ge 0 .$$ [b]7.3 [/b] In a quadrilateral $ABCD$, $M$ is the midpoint of AB, $N$ is the midpoint of $CD$. Lines $AD$ and BC intersect $MN$ at points $P$ and $Q$, respectively. Prove that if $\angle BQM = \angle APM$ , then $BC=AD$. [img]https://cdn.artofproblemsolving.com/attachments/a/2/1c3cbc62ee570a823b5f3f8d046da9fbb4b0f2.png[/img] [b]7.4 / 6.4[/b] Each of the eight given different natural numbers less than $16$. Prove that among their pairwise differences there is at least at least three are the same. [b]7.5 / 8.4[/b] An entire arc of circle is drawn through the vertices $A$ and $C$ of the rectangle $ABCD$ lying inside the rectangle. Draw a line parallel to $AB$ intersecting $BC$ at point $P$, $AD$ at point $Q$, and the arc $AC$ at point $R$ so that the sum of the areas of the figures $AQR$ and $CPR$ is the smallest. [img]https://cdn.artofproblemsolving.com/attachments/1/4/9b5a594f82a96d7eff750e15ca6801a5fc0bf1.png[/img] [b]7.6 / 6.5 [/b]The distance AB is 100 km. From A and B , cyclists simultaneously ride towards each other at speeds of 20 km/h and 30 km/hour accordingly. Together with the first A, a fly flies out with speed 50 km/h, she flies until she meets the cyclist from B, after which she turns around and flies back until she meets the cyclist from A, after which turns around, etc. How many kilometers will the fly fly in the direction from A to B until the cyclists meet? PS. You should use hide for answers.Collected [url=https://artofproblemsolving.com/community/c3988083_1967_leningrad_math_olympiad]here[/url].

MathLinks Contest 1st, 3

Consider $(f_n)_{n\ge 0}$ the Fibonacci sequence, defined by $f_0 = 0$, $f_1 = 1$, $f_{n+1} = f_n + f_{n-1}$ for all positive integers $n$. Solve the following equation in positive integers $$nf_nf_{n+1} = (f_{n+2} - 1)^2.$$ .

1989 Balkan MO, 1

Let $n$ be a positive integer and let $d_{1},d_{2},,\ldots ,d_{k}$ be its divisors, such that $1=d_{1}<d_{2}<\ldots <d_{k}=n$. Find all values of $n$ for which $k\geq 4$ and $n=d_{1}^{2}+d_{2}^{2}+d_{3}^{2}+d_{4}^{2}$.

2013 Saint Petersburg Mathematical Olympiad, 4

Tags: algebra
There are $100$ numbers from $(0,1)$ on the board. On every move we replace two numbers $a,b$ with roots of $x^2-ax+b=0$(if it has two roots). Prove that process is not endless.

2024-IMOC, C3

There are $n$ snails on the plane where the $i$ snail has $a_i$ attack and $d_i$ defense, where $a_i, d_i\in \mathbb{R}$ and each snail has a distinct attack and a distinct defense. We said a 4-tuple of subsets of snails $(S_1, S_2, S_3, S_4)$ is [b]balanced[/b] if $|S_1|+|S_3|$ is either $\lceil n/2\rceil$ or $\lfloor n/2\rfloor$ and there exist real numbers $A, D$ such that \begin{align*} S_1=\{i\ |\ a_i\geq A\text{ and } d_i\geq D, 1\leq i\leq n\}\\ S_2=\{i\ |\ a_i<A\text{ and } d_i\geq D, 1\leq i\leq n\}\\ S_3=\{i\ |\ a_i< A\text{ and } d_i< D, 1\leq i\leq n\}\\ S_4=\{i\ |\ a_i\geq A\text{ and } d_i< D, 1\leq i\leq n\} \end{align*} Find the largest integer $k$ such that there is always at least $k$ [b]balanced[/b] 4-tuples of subsets. [i]Proposed by redshrimp[/i]

1964 AMC 12/AHSME, 32

Tags:
If $\dfrac{a+b}{b+c}=\dfrac{c+d}{d+a}$, then: $\textbf{(A)}\ a\text{ must equal }c \qquad \textbf{(B)}\ a+b+c+d\text{ must equal zero }\qquad$ $ \textbf{(C)}\ \text{either }a=c\text{ or }a+b+c+d=0,\text{ or both} \qquad$ $ \textbf{(D)}\ a+b+c+d\neq 0\text{ if }a=c \qquad \textbf{(E)}\ a(b+c+d)=c(a+b+d)$

2017 ASDAN Math Tournament, 7

Tags:
Compute $$\lim_{t\rightarrow0}\int_0^t\frac{x^2+4x+4}{\sqrt{t^2-x^2}}dx.$$

2017 Israel Oral Olympiad, 2

Simplify the fraction: $\frac{(1^4+4)\cdot (5^4+4)\cdot (9^4+4)\cdot ... (69^4+4)\cdot(73^4+4)}{(3^4+4)\cdot (7^4+4)\cdot (11^4+4)\cdot ... (71^4+4)\cdot(75^4+4)}$.

1986 China Team Selection Test, 1

Given a square $ABCD$ whose side length is $1$, $P$ and $Q$ are points on the sides $AB$ and $AD$. If the perimeter of $APQ$ is $2$ find the angle $PCQ$.

2009 May Olympiad, 1

Each two-digit natural number is [i]assigned [/i] a digit as follows: Its digits are multiplied. If the result is a digit, this is the assigned digit. If the result is a two-digit number, these two figures are multiplied, and if the result is a digit, this is the assigned digit. Otherwise, the operation is repeated. For example, the digit assigned to $32$ is $6$ since $3 \times = 6$; the digit assigned to $93$ is $4$ since $9 \times 3 = 27$, $2 \times 7 = 14$, $1 \times 4 = 4$. Find all the two-digit numbers that are assigned $8$.

2008 Turkey Team Selection Test, 6

There are $ n$ voters and $ m$ candidates. Every voter makes a certain arrangement list of all candidates (there is one person in every place $ 1,2,...m$) and votes for the first $ k$ people in his/her list. The candidates with most votes are selected and say them winners. A poll profile is all of this $ n$ lists. If $ a$ is a candidate, $ R$ and $ R'$ are two poll profiles. $ R'$ is $ a\minus{}good$ for $ R$ if and only if for every voter; the people which in a worse position than $ a$ in $ R$ is also in a worse position than $ a$ in $ R'$. We say positive integer $ k$ is monotone if and only if for every $ R$ poll profile and every winner $ a$ for $ R$ poll profile is also a winner for all $ a\minus{}good$ $ R'$ poll profiles. Prove that $ k$ is monotone if and only if $ k>\frac{m(n\minus{}1)}{n}$.