This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2016 Bulgaria National Olympiad, Problem 5

Let $\triangle {ABC} $ be isosceles triangle with $AC=BC$ . The point $D$ lies on the extension of $AC$ beyond $C$ and is that $AC>CD$. The angular bisector of $ \angle BCD $ intersects $BD$ at point $N$ and let $M$ be the midpoint of $BD$. The tangent at $M$ to the circumcircle of triangle $AMD$ intersects the side $BC$ at point $P$. Prove that points $A,P,M$ and $N$ lie on a circle.

1989 Tournament Of Towns, (215) 3

Find six distinct positive integers such that the product of any two of them is divisible by their sum. (D. Fomin, Leningrad)

2021 CMIMC, 2.6 1.3

Tags: algebra
Let $a$ and $b$ be complex numbers such that $(a+1)(b+1)=2$ and $(a^2+1)(b^2+1)=32.$ Compute the sum of all possible values of $(a^4+1)(b^4+1).$ [i]Proposed by Kyle Lee[/i]

2009 Harvard-MIT Mathematics Tournament, 10

Let $a$ and $b$ be real numbers satisfying $a>b>0$. Evaluate \[\int_0^{2\pi}\dfrac{1}{a+b\cos(\theta)}d\theta.\] Express your answer in terms of $a$ and $b$.

1954 AMC 12/AHSME, 32

Tags:
The factors of $ x^4\plus{}64$ are: $ \textbf{(A)}\ (x^2\plus{}8)^2 \qquad \textbf{(B)}\ (x^2\plus{}8)(x^2\minus{}8) \qquad \textbf{(C)}\ (x^2\plus{}2x\plus{}4)(x^2\minus{}8x\plus{}16) \\ \textbf{(D)}\ (x^2\minus{}4x\plus{}8)(x^2\minus{}4x\minus{}8) \qquad \textbf{(E)}\ (x^2\minus{}4x\plus{}8)(x^2\plus{}4x\plus{}8)$

2012 NIMO Problems, 12

Tags:
The NEMO (National Electronic Math Olympiad) is similar to the NIMO Summer Contest, in that there are fifteen problems, each worth a set number of points. However, the NEMO is weighted using Fibonacci numbers; that is, the $n^{\text{th}}$ problem is worth $F_n$ points, where $F_1 = F_2 = 1$ and $F_n = F_{n-1} + F_{n-2}$ for $n \ge 3$. The two problem writers are fair people, so they make sure that each of them is responsible for problems worth an equal number of total points. Compute the number of ways problem writing assignments can be distributed between the two writers. [i]Proposed by Lewis Chen[/i]

STEMS 2021-22 Math Cat A-B, A1

Let $f$ be an irreducible monic polynomial with integer coefficients such that $f(0)$ is not equal to $1$. Let $z$ be a complex number that is a root of $f$. Show that if $w$ is another complex root of $f$, then $\frac{z}{w}$ cannot be a positive integer greater than $1$.

2017 Harvard-MIT Mathematics Tournament, 5

Tags: algebra
Given that $a,b,c$ are integers with $abc = 60$, and that complex number $\omega \neq 1$ satisfies $\omega^3=1$, find the minimum possible value of $| a + b\omega + c\omega^2|$.

2022 Durer Math Competition (First Round), 2

Determine all triangles that can be split into two congruent pieces by one cut. A cut consists of segments $P_1P_2$, $P_2P_3$, . . . , $P_{n-1}P_n$ where points $P_1, P_2, . . . , P_n$ are distinct, points $P_1$ and $P_n$ lie on the perimeter of the triangle and the rest of the points lie in the interior of the triangle such that the segments are disjoint except for the endpoints.

1999 Austrian-Polish Competition, 7

Find all pairs $(x,y)$ of positive integers such that $x^{x+y} =y^{y-x}$.

2015 Cuba MO, 4

Let $A = \overline{abcd}$ be a $4$-digit positive integer, such that $a\ge 7$ and $a > b >c > d > 0$. Let us consider a positive integer $B = \overline{dcba}$. If all digits of $A+B$ are odd, determine all possible values of $A$.

1999 Mongolian Mathematical Olympiad, Problem 4

Tags: algebra
A forest grows up $p$ percent during a summer, but gets reduced by $x$ units between two summers. At the beginning of this summer, the size of the forest has been $a$ units. How large should $x$ be if we want the forest to increase $q$ times in $n$ years?

2022 Caucasus Mathematical Olympiad, 4

Tags: geometry
Let $\omega$ is tangent to the sides of an acute angle with vertex $A$ at points $B$ and $C$. Let $D$ be an arbitrary point onn the major arc $BC$ of the circle $\omega$. Points $E$ and $F$ are chosen inside the angle $DAC$ so that quadrilaterals $ABDF$ and $ACED$ are inscribed and the points $A,E,F$ lie on the same straight line. Prove that lines $BE$ and $CF$ intersectat $\omega$.

2002 Estonia Team Selection Test, 1

The princess wishes to have a bracelet with $r$ rubies and $s$ emeralds arranged in such order that there exist two jewels on the bracelet such that starting with these and enumerating the jewels in the same direction she would obtain identical sequences of jewels. Prove that it is possible to fulfill the princess’s wish if and only if $r$ and $s$ have a common divisor.

2017 AMC 8, 3

Tags:
What is the value of the expression $\sqrt{16\sqrt{8\sqrt{4}}}$? $\textbf{(A) }4\qquad\textbf{(B) }4\sqrt{2}\qquad\textbf{(C) }8\qquad\textbf{(D) }8\sqrt{2}\qquad\textbf{(E) }16$

2013 Stanford Mathematics Tournament, 25

Tags:
A $3\times 6$ grid is filled with the numbers in the list $\{1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9\}$ according to the following rules: (1) Both the first three columns and the last three columns contain the integers 1 through 9. (2) No numbers appear more than once in a given row. Let $N$ be the number of ways to fill the grid and let $k$ be the largest positive integer such that $2^k$ divides $N$. What is k?

2017 Costa Rica - Final Round, 1

Tags: hexagon , geometry
Let the regular hexagon $ABCDEF$ be inscribed in a circle with center $O$, $N$ be such a point Let $E-N-C$, $M$ a point such that $A- M-C$ and $R$ a point on the circumference, such that $D-N- R$. If $\angle EFR = 90^o$, $\frac{AM}{AC}=\frac{CN}{EC}$ and $AC=\sqrt3$, calculate $AM$. Notation: $A-B-C$ means than points $A,B,C$ are collinear in that order i.e. $ B$ lies between $ A$ and $C$.

2024 HMNT, 21

Tags: guts
Two points are chosen independently and uniformly at random from the interior of the $X$-pentomino shown below. Compute the probability that the line segment between these two points lies entirely within the $X$-pentomino. [center] [img] https://cdn.artofproblemsolving.com/attachments/b/1/17565ba86dbc2358f546fa57145a7726d1b0a9.png [/img] [/center]

2018 Hanoi Open Mathematics Competitions, 4

How many triangles are there for which the perimeters are equal to $30$ cm and the lengths of sides are integers in centimeters? A. $16$ B. $17$ C. $18$ D. $19$ E. $20$

2024 ELMO Shortlist, G1

In convex quadrilateral $ABCD$, let diagonals $\overline{AC}$ and $\overline{BD}$ intersect at $E$. Let the circumcircles of $ADE$ and $BCE$ intersect $\overline{AB}$ again at $P \neq A$ and $Q \neq B$, respectively. Let the circumcircle of $ACP$ intersect $\overline{AD}$ again at $R \neq A$, and let the circumcircle of $BDQ$ intersect $\overline{BC}$ again at $S \neq B$. Prove that $A$, $B$, $R$, and $S$ are concyclic. [i]Tiger Zhang[/i]

2004 Thailand Mathematical Olympiad, 6

Let $a, b, c > 0$ satisfy $a + b + c \ge \frac{1}{a} +\frac{1}{b} +\frac{1}{c}$. Prove that $a^3 + b^3 + c^3 \ge a + b + c$

2012 Saint Petersburg Mathematical Olympiad, 2

We have big multivolume encyclopaedia about dogs on the shelf in alphabetical order, each volume in its specially selected place. Near each place there is an instruction that prescribes one of four actions: to rearrange this volume is one or two places left or right. If you simultaneously run all instructions, volumes will be placed in the same places in another order. The cynologist Dima performs all the instructions every morning. Once he discovered, that the volume of "Bichons" stands still, which was initially occupied by the volume of "Terriers". Prove , that after some time the volume of "Mudies" will stand on the original place of the volume "Poodles".

1951 AMC 12/AHSME, 46

$ AB$ is a fixed diameter of a circle whose center is $ O$. From $ C$, any point on the circle, a chord $ CD$ is drawn perpendicular to $ AB$. Then, as $ C$ moves over a semicircle, the bisector of angle $ OCD$ cuts the circle in a point that always: $ \textbf{(A)}\ \text{bisects the arc } AB \qquad\textbf{(B)}\ \text{trisects the arc } AB \qquad\textbf{(C)}\ \text{varies}$ $ \textbf{(D)}\ \text{is as far from }AB \text{ as from } D \qquad\textbf{(E)}\ \text{is equidistant from }B \text{ and } C$

2008 iTest Tournament of Champions, 5

Tags:
For positive integers $m,n\geq 3$, let $h(m,n)$ be the maximum (finite) number of intersection points between a simple $m$-gon and a simple $n$-gon. (Note: a polygon is simple if it does not intersect itself.) Evaluate \[\sum_{m=3}^6\sum_{n=3}^{12}h(m,n).\]

2005 AMC 8, 8

Tags:
Suppose m and n are positive odd integers. Which of the following must also be an odd integer? $ \textbf{(A)}\ m+3n\qquad\textbf{(B)}\ 3m-n\qquad\textbf{(C)}\ 3m^2 + 3n^2\qquad\textbf{(D)}\ (nm + 3)^2\qquad\textbf{(E)}\ 3mn $