This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2020 BMT Fall, 10

Let $\psi (n)$ be the number of integers $0 \le r < n$ such that there exists an integer $x$ that satis es $x^2 + x \equiv r$ (mod $n$). Find the sum of all distinct prime factors of $$\sum^4_{i=0}\sum^4_{j=0} \psi(3^i5^j).$$

1953 Moscow Mathematical Olympiad, 250

Somebody wrote $1953$ digits on a circle. The $1953$-digit number obtained by reading these figures clockwise, beginning at a certain point, is divisible by $27$. Prove that if one begins reading the figures at any other place, one gets another $1953$-digit number also divisible by $27$.

2007 Stanford Mathematics Tournament, 9

Tags: quadratic
Find $a^2+b^2$ given that $a, b$ are real and satisfy \[a=b+\frac{1}{a+\frac{1}{b+\frac{1}{a+\cdots}}}; b=a-\frac{1}{b+\frac{1}{a-\frac{1}{b+\cdots}}}\]

2017 Purple Comet Problems, 2

Tags: geometry
The figure below was made by gluing together 5 non-overlapping congruent squares. The figure has area 45. Find the perimeter of the figure. [center][img]https://snag.gy/ZeKf4q.jpg[/center][/img]

1997 Singapore Team Selection Test, 2

Let $a_n$ be the number of n-digit integers formed by $1, 2$ and $3$ which do not contain any consecutive $1$’s. Prove that $a_n$ is equal to $$\left( \frac12 + \frac{1}{\sqrt3}\right)(\sqrt{3} + 1)^n$$ rounded off to the nearest integer.

1984 Miklós Schweitzer, 2

Tags:
[b]2.[/b] Show that threre exist a compact set $K \subset \mathbb{R}$ and a set $A \subset \mathbb{R}$ of type $F_{\sigma}$ such that the set $\{ x\in \mathbb{R} : K+x \subset A\}$ is not Borel-measurable (here $K+x = \{y+x : y \in K\}$). ([b]M.16[/b]) [M. Laczkovich]

2023 Purple Comet Problems, 12

Find the greatest prime that divides $$1^2 - 2^2 + 3^2 - 4^2 +...- 98^2 + 99^2.$$

2025 ISI Entrance UGB, 4

Let $S^1 = \{ z \in \mathbb{C} \mid |z| =1 \}$ be the unit circle in the complex plane. Let $f \colon S^1 \longrightarrow S^2$ be the map given by $f(z) = z^2$. We define $f^{(1)} \colon = f$ and $f^{(k+1)} \colon = f \circ f^{(k)}$ for $k \geq 1$. The smallest positive integer $n$ such that $f^{(n)}(z) = z$ is called the [i]period[/i] of $z$. Determine the total number of points in $S^1$ of period $2025$. (Hint : $2025 = 3^4 \times 5^2$)

2023 VN Math Olympiad For High School Students, Problem 10

Tags: geometry
Given a triangle $ABC$ with [i]Lemoine[/i] point $L.$ Choose points $X,Y,Z$ on the segments $LA,LB,LC,$ respectively such that:$$\angle XBA=\angle YAB,\angle XCA=\angle ZAC.$$ Prove that: $\angle ZBC=\angle YCB.$

2014 Danube Mathematical Competition, 3

Given any integer $n \ge 2$, show that there exists a set of $n$ pairwise coprime composite integers in arithmetic progression.

1983 AMC 12/AHSME, 28

Tags: geometry , incenter , ratio
Triangle $\triangle ABC$ in the figure has area $10$. Points $D$, $E$ and $F$, all distinct from $A$, $B$ and $C$, are on sides $AB$, $BC$ and $CA$ respectively, and $AD = 2$, $DB = 3$. If triangle $\triangle ABE$ and quadrilateral $DBEF$ have equal areas, then that area is [asy] size(200); defaultpen(linewidth(0.7)+fontsize(10)); pair A=origin, B=(10,0), C=(8,7), F=7*dir(A--C), E=(10,0)+4*dir(B--C), D=4*dir(A--B); draw(A--B--C--A--E--F--D); pair point=incenter(A,B,C); label("$A$", A, dir(point--A)); label("$B$", B, dir(point--B)); label("$C$", C, dir(point--C)); label("$D$", D, dir(point--D)); label("$E$", E, dir(point--E)); label("$F$", F, dir(point--F)); label("$2$", (2,0), S); label("$3$", (7,0), S);[/asy] $ \textbf{(A)}\ 4\qquad\textbf{(B)}\ 5\qquad\textbf{(C)}\ 6\qquad\textbf{(D)}\ \frac{5}{3}\sqrt{10}\qquad\textbf{(E)}\ \text{not uniquely determined}$

2021 AMC 12/AHSME Fall, 22

Tags:
Azar and Carl play a game of tic-tac-toe. Azar places an X in one of the boxes in the $3$-by-$3$ array of boxes, then Carl places an O in one of the remaining boxes. After that, Azar places an X in one of the remaining boxes, and so on until all $9$ boxes are filled or one of the players has $3$ of their symbols in a row — horizontal, vertical, or diagonal — whichever comes first, in which case that player wins the game. Suppose the players make their moves at random, rather than trying to follow a rational strategy, and that Carl wins the game when he places his third O. How many ways can the board look after the game is over? $\textbf{(A)}\ 36 \qquad\textbf{(B)}\ 112 \qquad\textbf{(C)}\ 120 \qquad\textbf{(D)}\ 148 \qquad\textbf{(E)}\ 160$

2007 Moldova National Olympiad, 11.1

Tags: algebra
Define the sequence $(x_{n})$: $x_{1}=\frac{1}{3}$ and $x_{n+1}=x_{n}^{2}+x_{n}$. Find $\left[\frac{1}{x_{1}+1}+\frac{1}{x_{2}+1}+\dots+\frac{1}{x_{2007}+1}\right]$, wehere $[$ $]$ denotes the integer part.

2008 Ukraine Team Selection Test, 6

Prove that there exist infinitely many pairs $ (a, b)$ of natural numbers not equal to $ 1$ such that $ b^b \plus{}a$ is divisible by $ a^a \plus{}b$.

2022 South East Mathematical Olympiad, 5

Let $a,b,c,d$ be non-negative integers. $(1)$ If $a^2+b^2-cd^2=2022 ,$ find the minimum of $a+b+c+d;$ $(1)$ If $a^2-b^2+cd^2=2022 ,$ find the minimum of $a+b+c+d .$

1976 IMO Longlists, 33

A finite set of points $P$ in the plane has the following property: Every line through two points in $P$ contains at least one more point belonging to $P$. Prove that all points in $P$ lie on a straight line. [hide="Remark."]This may be a well known theorem called "Sylvester Gallai", but I didn't find this problem (I mean, exactly this one) using search function. So please discuss about the problem here, in this topic. Thanks :) [/hide]

1998 All-Russian Olympiad Regional Round, 9.7

Given a billiard in the form of a regular $1998$-gon $A_1A_2...A_{1998}$. A ball was released from the midpoint of side $A_1A_2$, which, reflected therefore from sides $A_2A_3$, $A_3A_4$, . . . , $A_{1998}A_1$ (according to the law, the angle of incidence is equal to the angle of reflection), returned to the starting point. Prove that the trajectory of the ball is a regular $1998$-gon.

DMM Individual Rounds, 1999

[b]p1.[/b] Function $f$ is defined by $f (x) = ax+b$ for some real values $a, b > 0$. If $f (f (x)) = 9x + 5$ for all $x$, find $b$. [b]p2.[/b] At some point during a game, Will Avery has made $1/3$ of his shots. When he shoots once and makes a basket, his average increases to $2/5$. Find his average (expressed as a fraction) after a second additional basket. [b]p3.[/b] A dealer has a deck of $1999$ cards. He takes the top card off and “ducks” it, that is, places it on the bottom of the deck. He deals the second card onto the table. He ducks the third card, deals the fourth card, ducks the fifth card, deals the sixth card, and so forth, continuing until he has only one card left; he then ducks the last card with itself and deals it. Some of the cards (like the second and fourth cards) are not ducked at all before being dealt, while others are ducked multiple times. The question is: what is the average number of ducks per card? [b]p4.[/b] Point $P$ lies outside circle $O$. Perpendicular lines $\ell$ and m intersect at $P$. Line $\ell$ is tangent to circle $O$ at a point $6$ units from $P$. Line $m$ crosses circle $O$ at a point $4$ units from $P$. Find the radius of circle $O$. [b]p5.[/b] Define $f(n)$ by $$f(n) = \begin{cases} n/2 \,\,\,\text{if} \,\,\, n\,\,\,is\,\,\, even \\ (n + 1023)/2\,\,\, \text{if} \,\,\, n\,\,\,is\,\,\, odd \end{cases}$$ Find the least positive integer $n$ such that $f(f(f(f(f(n))))) = n.$ [b]p6.[/b] Write $\sqrt{10001}$ to the sixth decimal place, rounding down. [b]p7.[/b] Define $(a_n)$ recursively by $a_1 = 1$, $a_n = 20 \cos (a_{n-1}^o)$. As $n$ tends to infinity, $(a_n)$ tends to $18.9195...$. Define $(b_n)$ recursively by $b_1 = 1$, $b_n =\sqrt{800 + 800 \cos (b_{n-1}^o)}$. As $n$ tends to infinity, $(b_n)$ tends to $x$. Calculate $x$ to three decimal places. [b]p8.[/b] Let $mod_d (k)$ be the remainder of $k$ when divided by $d$. Find the number of positive integers $n$ satisfying $$mod_n(1999) = n^2 - 89n + 1999$$ [b]p9.[/b] Let $f(x) = x^3 + x$. Compute $$\sum^{10}_{k=1} \frac{1}{1 + f^{-1}(k - 1)^2 + f^{-1}(k - 1)f^{-1}(k) + f^{-1}(k)^2}$$ ($f^{-1}$ is the inverse of $f$: $f (f^{-1}1 (x)) = f^{-1}1 (f (x)) = x$ for all $x$.) PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2010 Contests, 2

Tags: geometry
Karlson and Smidge divide a cake in a shape of a square in the following way. First, Karlson places a candle on the cake (chooses some interior point). Then Smidge makes a straight cut from the candle to the boundary in the direction of his choice. Then Karlson makes a straight cut from the candle to the boundary in the direction perpendicular to Smidge's cut. As a result, the cake is split into two pieces; Smidge gets the smaller one. Smidge wants to get a piece which is no less than a quarter of the cake. Can Karlson prevent Smidge from getting the piece of that size?

1981 All Soviet Union Mathematical Olympiad, 318

The points $C_1, A_1, B_1$ belong to $[AB], [BC], [CA]$ sides, respectively, of the triangle $ABC$ . $$\frac{|AC_1|}{|C_1B| }=\frac{ |BA_1|}{|A_1C| }= \frac{|CB_1|}{|B_1A| }= \frac{1}{3}$$ Prove that the perimeter $P$ of the triangle $ABC$ and the perimeter $p$ of the triangle $A_1B_1C_1$ , satisfy inequality $$\frac{P}{2} < p < \frac{3P}{4}$$

1973 Kurschak Competition, 2

For any positive real $r$, let $d(r)$ be the distance of the nearest lattice point from the circle center the origin and radius $r$. Show that $d(r)$ tends to zero as $r$ tends to infinity.

2005 JHMT, 7

Tags: geometry
Equilateral triangle $ABC$ is inscribed in a circle with radius $6$. Find the area of the region enclosed by $AB$, $AC$, and the minor arc $BC$.

2021 Denmark MO - Mohr Contest, 4

Given triangle $ABC$ with $|AC| > |BC|$. The point $M$ lies on the angle bisector of angle $C$, and $BM$ is perpendicular to the angle bisector. Prove that the area of triangle AMC is half of the area of triangle $ABC$. [img]https://cdn.artofproblemsolving.com/attachments/4/2/1b541b76ec4a9c052b8866acbfea9a0ce04b56.png[/img]

2021 Princeton University Math Competition, A4 / B5

Let $f(n) = \sum_{gcd(k,n)=1,1\le k\le n}k^3$ . If the prime factorization of $f(2020)$ can be written as $p^{e_1}_1 p^{e_2}_2 ... p^{e_k}_k$, find $\sum^k_{i=1} p_ie_i$.

2016 Kosovo National Mathematical Olympiad, 3

Tags:
The distance from $A$ to $B$ is $408km$ . From $A$ in direction of $B$ move motorcyclist , and from $B$ in direction of $A$ move a bicyclist . If a motorcyclist start to move $2$ hours earlier then byciclist , then they will meet $7$ hours after bicyclist start to move . If a bicyclist start to move $2$ hours earlier then motorcyclist , then they will meet $8$ hours after after motorcyclist start to move . Find the velocity of motorcyclist and bicyclist if we now that the velocity of them was constant all the time .