This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

1990 Baltic Way, 7

Tags: ratio
The midpoint of each side of a convex pentagon is connected by a segment with the centroid of the triangle formed by the remaining three vertices of the pentagon. Prove that these five segments have a common point.

2016 May Olympiad, 3

We say that a positive integer is [i]quad-divi[/i] if it is divisible by the sum of the squares of its digits, and also none of its digits is equal to zero. a) Find a quad-divi number such that the sum of its digits is $24$. b) Find a quad-divi number such that the sum of its digits is $1001$.

1997 Estonia Team Selection Test, 1

In a triangle $ABC$ points $A_1,B_1,C_1$ are the midpoints of $BC,CA,AB$ respectively,and $A_2,B_2,C_2$ are the midpoints of the altitudes from $A,B,C$ respectively. Show that the lines $A_1A_2,B_1B_2,C_1,C_2$ are concurrent.

2020 BMT Fall, 16

The triangle with side lengths $3, 5$, and $k$ has area $6$ for two distinct values of $k$: $x$ and $y$. Compute $ |x^2 -y^2|$.

2002 National Olympiad First Round, 2

What is $3^{2002}$ in $\bmod 11$? $ \textbf{a)}\ 1 \qquad\textbf{b)}\ 3 \qquad\textbf{c)}\ 4 \qquad\textbf{d)}\ 5 \qquad\textbf{e)}\ \text{None of above} $

2016 Harvard-MIT Mathematics Tournament, 9

Tags: hmmt
The vertices of a regular nonagon are colored such that $1)$ adjacent vertices are different colors and $2)$ if $3$ vertices form an equilateral triangle, they are all different colors. Let $m$ be the minimum number of colors needed for a valid coloring, and n be the total number of colorings using $m$ colors. Determine $mn$. (Assume each vertex is distinguishable.)

2014 BMT Spring, 10

Consider $ 8$ points that are a knight’s move away from the origin (i.e., the eight points $\{(2, 1)$ , $(2, -1)$ , $(1, 2)$ , $(1, -2)$ , $(-1, 2)$ , $(-1, -2)$ , $(-2, 1)$, $(-2, -1)\}$). Each point has probability $\frac12$ of being visible. What is the expected value of the area of the polygon formed by points that are visible? (If exactly $0, 1, 2$ points appear, this area will be zero.)

2016 Benelux, 4

Tags: geometry
A circle $\omega$ passes through the two vertices $B$ and $C$ of a triangle $ABC.$ Furthermore, $\omega$ intersects segment $AC$ in $D\ne C$ and segment $AB$ in $E\ne B.$ On the ray from $B$ through $D$ lies a point $K$ such that $|BK| = |AC|,$ and on the ray from $C$ through $E$ lies a point $L$ such that $|CL| = |AB|.$ Show that the circumcentre $O$ of triangle $AKL$ lies on $\omega$.

1955 AMC 12/AHSME, 25

One of the factors of $ x^4\plus{}2x^2\plus{}9$ is: $ \textbf{(A)}\ x^2\plus{}3 \qquad \textbf{(B)}\ x\plus{}1 \qquad \textbf{(C)}\ x^2\minus{}3 \qquad \textbf{(D)}\ x^2\minus{}2x\minus{}3 \qquad \textbf{(E)}\ \text{none of these}$

1986 Bundeswettbewerb Mathematik, 1

There are $n$ points on a circle ($n > 1$). Denote them with $P_1,P_2, P_3, ..., P_n$ such that the polyline $P_1P_2P_3... P_n$ does not intersect itself. In how many ways is this possible?

2017 USAJMO, 6

Tags:
Let $P_1$, $P_2$, $\dots$, $P_{2n}$ be $2n$ distinct points on the unit circle $x^2+y^2=1$, other than $(1,0)$. Each point is colored either red or blue, with exactly $n$ red points and $n$ blue points. Let $R_1$, $R_2$, $\dots$, $R_n$ be any ordering of the red points. Let $B_1$ be the nearest blue point to $R_1$ traveling counterclockwise around the circle starting from $R_1$. Then let $B_2$ be the nearest of the remaining blue points to $R_2$ travelling counterclockwise around the circle from $R_2$, and so on, until we have labeled all of the blue points $B_1, \dots, B_n$. Show that the number of counterclockwise arcs of the form $R_i \to B_i$ that contain the point $(1,0)$ is independent of the way we chose the ordering $R_1, \dots, R_n$ of the red points.

1976 USAMO, 4

If the sum of the lengths of the six edges of a trirectangular tetrahedron $ PABC$ (i.e., $ \angle APB \equal{} \angle BPC \equal{} \angle CPA \equal{} 90^\circ$) is $ S$, determine its maximum volume.

2003 Gheorghe Vranceanu, 3

Let be a point $ P $ in the interior of a parallelogram $ ABCD $ such that $ \angle PAD=\angle PCD. $ Prove that the bisectors of $ \angle BAD $ and $ \angle BPD $ are parallel.

2001 IMO Shortlist, 4

Let $p \geq 5$ be a prime number. Prove that there exists an integer $a$ with $1 \leq a \leq p-2$ such that neither $a^{p-1}-1$ nor $(a+1)^{p-1}-1$ is divisible by $p^2$.

2005 Today's Calculation Of Integral, 17

Calculate the following indefinite integrals. [1] $\int \frac{dx}{e^x-e^{-x}}$ [2] $\int e^{-ax}\cos 2x dx\ (a\neq 0)$ [3] $\int (3^x-2)^2 dx$ [4] $\int \frac{x^4+2x^3+3x^2+1}{(x+2)^5}dx$ [5] $\int \frac{dx}{1-\cos x}dx$

2011 Turkey Team Selection Test, 2

Graphistan has $2011$ cities and Graph Air (GA) is running one-way flights between all pairs of these cities. Determine the maximum possible value of the integer $k$ such that no matter how these flights are arranged it is possible to travel between any two cities in Graphistan riding only GA flights as long as the absolute values of the difference between the number of flights originating and terminating at any city is not more than $k.$

2015 Purple Comet Problems, 15

Tags:
How many positive integers less than 2015 have exactly 9 positive integer divisors?

2002 AMC 10, 9

Tags:
Suppose $ A$, $ B$, and $ C$ are three numbers for which $ 1001C\minus{}2002A\equal{}4004$ and $ 1001B\plus{}3003A\equal{}5005$.The average of the three numbers $ A$, $ B$, and $ C$ is $ \text{(A)}\ 1 \qquad \text{(B)}\ 3 \qquad \text{(C)}\ 6 \qquad \text{(D)}\ 9 \qquad \text{(E)}\ \text{not uniquely determined}$

Mexican Quarantine Mathematical Olympiad, #2

Let $n$ be an integer greater than $1$. A certain school has $1+2+\dots+n$ students and $n$ classrooms, with capacities for $1, 2, \dots, n$ people, respectively. The kids play a game in $k$ rounds as follows: in each round, when the bell rings, the students distribute themselves among the classrooms in such a way that they don't exceed the room capacities, and if two students shared a classroom in a previous round, they cannot do it anymore in the current round. For each $n$, determine the greatest possible value of $k$. [i]Proposed by Victor Domínguez[/i]

2000 Hong kong National Olympiad, 1

Let $O$ be the circumcentre of a triangle $ABC$ with $AB > AC > BC$. Let $D$ be a point on the minor arc $BC$ of the circumcircle and let $E$ and $F$ be points on $AD$ such that $AB \perp OE$ and $AC \perp OF$ . The lines $BE$ and $CF$ meet at $P$. Prove that if $PB=PC+PO$, then $\angle BAC = 30^{\circ}$.

2001 Croatia National Olympiad, Problem 4

Find all possible values of $n$ for which a rectangular board $9\times n$ can be partitioned into tiles of the shape: [img]https://services.artofproblemsolving.com/download.php?id=YXR0YWNobWVudHMvYi8wLzdjM2Y4ZmE0Zjg1YWZlZGEzNTQ1MmEyNTc3ZjJkNzBlMjExYmY1LnBuZw==&rn=U2NyZWVuIFNob3QgMjAyMS0wNC0yMiBhdCA1LjEzLjU3IEFNLnBuZw==[/img]

2021 Federal Competition For Advanced Students, P1, 4

On a blackboard, there are $17$ integers not divisible by $17$. Alice and Bob play a game. Alice starts and they alternately play the following moves: $\bullet$ Alice chooses a number $a$ on the blackboard and replaces it with $a^2$ $\bullet$ Bob chooses a number $b$ on the blackboard and replaces it with $b^3$. Alice wins if the sum of the numbers on the blackboard is a multiple of $17$ after a finite number of steps. Prove that Alice has a winning strategy. (Daniel Holmes)

2022 CMWMC, R8

[u]Set 8[/u] [b]p22.[/b] For monic quadratic polynomials $P = x^2 + ax + b$ and $Q = x^2 + cx + d$, where $1 \le a, b, c, d \le 10$ are integers, we say that $P$ and $Q$ are friends if there exists an integer $1 \le n \le 10$ such that $P(n) = Q(n)$. Find the total number of ordered pairs $(P, Q)$ of such quadratic polynomials that are friends. [b]p23.[/b] A three-dimensional solid has six vertices and eight faces. Two of these faces are parallel equilateral triangles with side length $1$, $\vartriangle A_1A_2A_3$ and $\vartriangle B_1B_2B_3$. The other six faces are isosceles right triangles — $\vartriangle A_1B_2A_3$, $\vartriangle A_2B_3A_1$, $\vartriangle A_3B_1A_2$, $\vartriangle B_1A_2B_3$, $\vartriangle B_2A_3B_1$, $\vartriangle B_3A_1B_2$ — each with a right angle at the second vertex listed (so for instace $\vartriangle A_1B_2A_3$ has a right angle at $B_2$). Find the volume of this solid. [b]p24.[/b] The digits $0, 1, 2, 3, 4, 5, 6, 7, 8, 9$ are each colored red, blue, or green. Find the number of colorings such that any integer $ n \ge 2$ has that (a) If $n$ is prime, then at least one digit of $n$ is not blue. (b) If $n$ is composite, then at least one digit of $n$ is not green. PS. You should use hide for answers.

2008 Balkan MO Shortlist, G2

Given a scalene acute triangle $ ABC$ with $ AC>BC$ let $ F$ be the foot of the altitude from $ C$. Let $ P$ be a point on $ AB$, different from $ A$ so that $ AF\equal{}PF$. Let $ H,O,M$ be the orthocenter, circumcenter and midpoint of $ [AC]$. Let $ X$ be the intersection point of $ BC$ and $ HP$. Let $ Y$ be the intersection point of $ OM$ and $ FX$ and let $ OF$ intersect $ AC$ at $ Z$. Prove that $ F,M,Y,Z$ are concyclic.

1981 Poland - Second Round, 4

The given natural numbers are $ k, n $. We inductively define two sequences of numbers $ (a_j) $ and $ (r_j) $ as follows: Step one: we divide $ k $ by $ n $ and get the quotient $ a_1 $ and the remainder $ r_i $, step j: we divide $ k+r_{j-1} $ by $ n $ and get the quotient $ a_j $ and the remainder $ r_j $. Calculate the sum of $ a_1 + \ldots + a_n $.