Found problems: 85335
2007 Harvard-MIT Mathematics Tournament, 1
A cube of edge length $s>0$ has the property that its surface area is equal to the sum of its volume and five times its edge length. Compute all possible values of $s$.
2007 Alexandru Myller, 3
Let $ ABC $ be a right angle in $ A, $ and $ M $ be the mid of $ BC. $ On the perpendicular of $ AM $ through $ A $ choose a point $ D $ so that $ DM $ meets $ AB $ at a point, namely $ P. $ Let $ E $ be the projection of $ D $ on $ BC. $ Show that $ \angle BPM =\angle EAC. $
2022 LMT Spring, 1
Kevin colors a ninja star on a piece of graph paper where each small square has area $1$ square inch. Find the area of the region colored, in square inches.
[img]https://cdn.artofproblemsolving.com/attachments/3/3/86f0ae7465e99d3e4bd3a816201383b98dc429.png[/img]
LMT Guts Rounds, 29
Let $S$ be the set of integers that represent the number of intersections of some four distinct lines in the plane. List the elements of $S$ in ascending order.
2025 Ukraine National Mathematical Olympiad, 10.6
Find all triples of nonnegative real numbers \((x, y, z)\) that satisfy the equality:
\[
\frac{\left(x^2 - y\right)(1 - y)}{(x - y)^2} + \frac{\left(y^2 - z\right)(1 - z)}{(y - z)^2} + \frac{\left(z^2 - x\right)(1 - x)}{(z - x)^2} = 3
\]
[i]Proposed by Vadym Solomka[/i]
Russian TST 2022, P3
Let $n = 2k + 1$ be an odd positive integer, and $m$ be an integer realtively prime to $n{}$. For each $j =1,2,\ldots,k$ we define $p_j$ as the unique integer from the interval $[-k, k]$ congruent to $m\cdot j$ modulo $n{}$. Prove that there are equally many pairs $(i,j)$ for which $1\leqslant i<j\leqslant k$ which satisfy $|p_i|>|p_j|$ as those which satisfy $p_ip_j<0$.
1999 Croatia National Olympiad, Problem 4
On the coordinate plane is given the square with vertices $T_1(1,0),T_2(0,1),T_3(-1,0),T_4(0,-1)$. For every $n\in\mathbb N$, point $T_{n+4}$ is defined as the midpoint of the segment $T_nT_{n+1}$. Determine the coordinates of the limit point of $T_n$ as $n\to\infty$, if it exists.
1996 Moldova Team Selection Test, 3
In triangle $ABC$ medians from $B$ and $C$ are perpendicular. Prove that $\frac{\sin(B+C)}{\sin B \cdot \sin C} \geq \frac{2}{3}.$
2024 Sharygin Geometry Olympiad, 13
Can an arbitrary polygon be cut into isosceles trapezoids?
2003 AMC 8, 15
A figure is constructed from unit cubes. Each cube shares at least one face with another cube. What is the minimum number of cubes needed to build a figure with the front and side views shown?
[asy]
defaultpen(linewidth(0.8));
path p=unitsquare;
draw(p^^shift(0,1)*p^^shift(1,0)*p);
draw(shift(4,0)*p^^shift(5,0)*p^^shift(5,1)*p);
label("FRONT", (1,0), S);
label("SIDE", (5,0), S);[/asy]
$ \textbf{(A)}\ 3\qquad\textbf{(B)}\ 4\qquad\textbf{(C)}\ 5\qquad\textbf{(D)}\ 6\qquad\textbf{(E)}\ 7$
2020 CMIMC Combinatorics & Computer Science, 2
David is taking a true/false exam with $9$ questions. Unfortunately, he doesn’t know the answer to any of the questions, but he does know that exactly $5$ of the answers are True. In accordance with this, David guesses the answers to all $9$ questions, making sure that exactly $5$ of his answers are True. What is the probability he answers at least $5$ questions correctly?
1983 Austrian-Polish Competition, 3
A bounded planar region of area $S$ is covered by a finite family $F$ of closed discs. Prove that $F$ contains a subfamily consisting of pairwise disjoint discs, of joint area not less than $S/9$.
2001 Junior Balkan Team Selection Tests - Romania, 1
Let $n$ be a non-negative integer. Find all non-negative integers $a,b,c,d$ such that
\[a^2+b^2+c^2+d^2=7\cdot 4^n\]
2015 Princeton University Math Competition, A8
The incircle of acute triangle $ABC$ touches $BC, AC$, and $AB$ at points $D, E$, and $F$, respectively. Let $P$ be the second intersection of line $AD$ and the incircle. The line through $P$ tangent to the incircle intersects $AB$ and $AC$ at points $M$ and $N$, respectively. Given that $\overline{AB} = 8, \overline{AC} = 10$, and $\overline{AN} = 4$, let $\overline{AM} = \tfrac{a}{b}$ where $a$ and $b$ are positive coprime integers. What is $a + b$?
2006 Indonesia MO, 7
Let $ a,b,c$ be real numbers such that $ ab,bc,ca$ are rational numbers. Prove that there are integers $ x,y,z$, not all of them are $ 0$, such that $ ax\plus{}by\plus{}cz\equal{}0$.
1989 Romania Team Selection Test, 1
Prove that $\sqrt {1+\sqrt {2+\ldots +\sqrt {n}}}<2$, $\forall n\ge 1$.
2021 IMO Shortlist, N5
Show that $n!=a^{n-1}+b^{n-1}+c^{n-1}$ has only finitely many solutions in positive integers.
[i]Proposed by Dorlir Ahmeti, Albania[/i]
1999 All-Russian Olympiad, 4
A frog is placed on each cell of a $n \times n$ square inside an infinite chessboard (so initially there are a total of $n \times n$ frogs). Each move consists of a frog $A$ jumping over a frog $B$ adjacent to it with $A$ landing in the next cell and $B$ disappearing (adjacent means two cells sharing a side). Prove that at least $ \left[\frac{n^2}{3}\right]$ moves are needed to reach a configuration where no more moves are possible.
2015 Cuba MO, 2
In a certain country there are 9 cities and two airline companies: AeroSol and AeroLuna. Between each pair of cities there are flights from one and only one of them. the two companies. Furthermore, for any triple of cities $X$, $Y$,$ Z$ σt least one of the flights between them is served by AeroLuna. It is possible to find $4$ cities such that all flights between them be served by AeroLuna?
ABMC Speed Rounds, 2023
[i]25 problems for 30 minutes[/i]
[b]p1.[/b] Compute $2^2 + 0 \cdot 0 + 2^2 + 3^3$.
[b]p2.[/b] How many total letters (not necessarily distinct) are there in the names Jerry, Justin, Jackie, Jason, and Jeffrey?
[b]p3.[/b] What is the remainder when $20232023$ is divided by $50$?
[b]p4.[/b] Let $ABCD$ be a square. The fraction of the area of $ABCD$ that is the area of the intersection of triangles $ABD$ and $ABC$ can be expressed as $\frac{a}{b}$ , where $a$ and $b$ relatively prime positive integers. Find $a + b$.
[b]p5.[/b] Raymond is playing basketball. He makes a total of $15$ shots, all of which are either worth $2$ or $3$ points. Given he scored a total of $40$ points, how many $2$-point shots did he make?
[b]p6.[/b] If a fair coin is flipped $4$ times, the probability that it lands on heads more often than tails is $\frac{a}{b}$ , where $a$ and $b$ relatively prime positive integers. Find $a + b$.
[b]p7.[/b] What is the sum of the perfect square divisors of $640$?
[b]p8.[/b] A regular hexagon and an equilateral triangle have the same perimeter. The ratio of the area between the hexagon and equilateral triangle can be expressed in the form $\frac{a}{b}$ , where $a$ and $b$ are relatively prime positive integers. Find $a + b$.
[b]p9.[/b] If a cylinder has volume $1024\pi$, radius of $r$ and height $h$, how many ordered pairs of integers $(r, h)$ are possible?
[b]p10.[/b] Pump $A$ can fill up a balloon in $3$ hours, while pump $B$ can fill up a balloon in $5$ hours. Pump $A$ starts filling up a balloon at $12:00$ PM, and pump $B$ is added alongside pump $A$ at a later time. If the balloon is completely filled at $2:00$ PM, how many minutes after $12:00$ PM was Pump $B$ added?
[b]p11.[/b] For some positive integer $k$, the product $81 \cdot k$ has $20$ factors. Find the smallest possible value of $k$.
[b]p12.[/b] Two people wish to sit in a row of fifty chairs. How many ways can they sit in the chairs if they do not want to sit directly next to each other and they do not want to sit with exactly one empty chair between them?
[b]p13.[/b] Let $\vartriangle ABC$ be an equilateral triangle with side length $2$ and $M$ be the midpoint of $BC$. Let $P$ be a point in the same plane such that $2PM = BC$. The minimum value of $AP$ can be expressed as $\sqrt{a}-b$, where $a$ and $b$ are positive integers such that $a$ is not divisible by any perfect square aside from $1$. Find $a + b$.
[b]p14.[/b] What are the $2022$nd to $2024$th digits after the decimal point in the decimal expansion of $\frac{1}{27}$ , expressed as a $3$ digit number in that order (i.e the $2022$nd digit is the hundreds digit, $2023$rd digit is the tens digit, and $2024$th digit is the ones digit)?
[b]p15.[/b] After combining like terms, how many terms are in the expansion of $(xyz+xy+yz+xz+x+y+z)^{20}$?
[b]p16.[/b] Let $ABCD$ be a trapezoid with $AB \parallel CD$ where $AB > CD$, $\angle B = 90^o$, and $BC = 12$. A line $k$ is dropped from $A$, perpendicular to line $CD$, and another line $\ell$ is dropped from $C$, perpendicular to line $AD$. $k$ and $\ell$ intersect at $X$. If $\vartriangle AXC$ is an equilateral triangle, the area of $ABCD$ can be written as $m\sqrt{n}$, where $m$ and $n$ are positive integers such that $n$ is not divisible by any perfect square aside from $1$. Find $m + n$.
[b]p17.[/b] If real numbers $x$ and $y$ satisfy $2x^2 + y^2 = 8x$, maximize the expression $x^2 + y^2 + 4x$.
[b]p18.[/b] Let $f(x)$ be a monic quadratic polynomial with nonzero real coefficients. Given that the minimum value of $f(x)$ is one of the roots of $f(x)$, and that $f(2022) = 1$, there are two possible values of $f(2023)$. Find the larger of these two values.
[b]p19.[/b] I am thinking of a positive integer. After realizing that it is four more than a multiple of $3$, four less than a multiple of $4$, four more than a multiple of 5, and four less than a multiple of $7$, I forgot my number. What is the smallest possible value of my number?
[b]p20.[/b] How many ways can Aston, Bryan, Cindy, Daniel, and Evan occupy a row of $14$ chairs such that none of them are sitting next to each other?
[b]p21.[/b] Let $x$ be a positive real number. The minimum value of $\frac{1}{x^2} +\sqrt{x}$ can be expressed in the form \frac{a}{b^{(c/d)}} , where $a$, $b$, $c$, $d$ are all positive integers, $a$ and $b$ are relatively prime, $c$ and $d$ are relatively prime, and $b$ is not divisible by any perfect square. Find $a + b + c + d$.
[b]p22.[/b] For all $x > 0$, the function $f(x)$ is defined as $\lfloor x \rfloor \cdot (x + \{x\})$. There are $24$ possible $x$ such that $f(x)$ is an integer between $2000$ and $2023$, inclusive. If the sum of these $24$ numbers equals $N$, then find $\lfloor N \rfloor$.
Note: Recall that $\lfloor x \rfloor$ is the greatest integer less than or equal to $x$, called the floor function. Also, $\{x\}$ is defined as $x - \lfloor x \rfloor$, called the fractional part function.
[b]p23.[/b] Let $ABCD$ be a rectangle with $AD = 1$. Let $P$ be a point on diagonal $\overline{AC}$, and let $\omega$ and $\xi$ be the circumcircles of $\vartriangle APB$ and $\vartriangle CPD$, respectively. Line $\overleftrightarrow{AD}$ is extended, intersecting $\omega$ at $X$, and $\xi$ at $Y$ . If $AX = 5$ and $DY = 2$, find $[ABCD]^2$.
Note: $[ABCD]$ denotes the area of the polygon $ABCD$.
[b]p24.[/b] Alice writes all of the three-digit numbers on a blackboard (it’s a pretty big blackboard). Let $X_a$ be the set of three-digit numbers containing a somewhere in its representation, where a is a string of digits. (For example, $X_{12}$ would include $12$, $121$, $312$, etc.) If Bob then picks a value of $a$ at random so $0 \le a \le 999$, the expected number of elements in $X_a$ can be expressed as $\frac{m}{n}$ , where $m$ and $n$ are relatively prime positive integers. Find$ m + n$.
[b]p25.[/b] Let $f(x) = x^5 + 2x^4 - 2x^3 + 4x^2 + 5x + 6$ and $g(x) = x^4 - x^3 + x^2 - x + 1$. If $a$, $b$, $c$, $d$ are the roots of $g(x)$, then find $f(a) + f(b) + f(c) + f(d)$.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2012 Dutch BxMO/EGMO TST, 1
Do there exist quadratic polynomials $P(x)$ and $Q(x)$ with real coeffcients such that the polynomial $P(Q(x))$ has precisely the zeros $x = 2, x = 3, x =5$ and $x = 7$?
2002 AMC 8, 2
How many different combinations of $5$ bills and $2$ bills can be used to make a total of $17$? Order does not matter in this problem.
$ \text{(A)}\ 2\qquad\text{(B)}\ 3\qquad\text{(C)}\ 4\qquad\text{(D)}\ 5\qquad\text{(E)}\ 6 $
1998 Junior Balkan Team Selection Tests - Romania, 1
Show that $ \frac{\frac{1}{1\cdot 2} +\frac{1}{3\cdot 4}+\cdots +\frac1{1997\cdot 1998}}{\frac{2}{1000\cdot 1998} +\frac{1}{1001\cdot 1997}} $ is an integer number.
[i]Bogdan Enescu[/i]
2010 Contests, 3
We are given a cyclic quadrilateral $ABCD$ with a point $E$ on the diagonal $AC$ such that $AD=AE$ and $CB=CE$. Let $M$ be the center of the circumcircle $k$ of the triangle $BDE$. The circle $k$ intersects the line $AC$ in the points $E$ and $F$. Prove that the lines $FM$, $AD$ and $BC$ meet at one point.
[i](4th Middle European Mathematical Olympiad, Individual Competition, Problem 3)[/i]
2007 China National Olympiad, 3
Let $a_1, a_2, \ldots , a_{11}$ be 11 pairwise distinct positive integer with sum less than 2007. Let S be the sequence of $1,2, \ldots ,2007$. Define an [b]operation[/b] to be 22 consecutive applications of the following steps on the sequence $S$: on $i$-th step, choose a number from the sequense $S$ at random, say $x$. If $1 \leq i \leq 11$, replace $x$ with $x+a_i$ ; if $12 \leq i \leq 22$, replace $x$ with $x-a_{i-11}$ . If the result of [b]operation[/b] on the sequence $S$ is an odd permutation of $\{1, 2, \ldots , 2007\}$, it is an [b]odd operation[/b]; if the result of [b]operation[/b] on the sequence $S$ is an even permutation of $\{1, 2, \ldots , 2007\}$, it is an [b]even operation[/b]. Which is larger, the number of odd operation or the number of even permutation? And by how many?
Here $\{x_1, x_2, \ldots , x_{2007}\}$ is an even permutation of $\{1, 2, \ldots ,2007\}$ if the product $\prod_{i > j} (x_i - x_j)$ is positive, and an odd one otherwise.