Found problems: 85335
1993 Baltic Way, 8
Compute the sum of all positive integers whose digits form either a strictly increasing or strictly decreasing sequence.
1997 Tournament Of Towns, (564) 5
Dima invented a secret code in which every letter is replaced by a word no longer than $10$ letters. A code is called “good” if every encoded word can be decoded in only one way. Serjozha (with the help of a computer) checked that for Dima’s code, every possible word of at most $10000$ letters can be decoded in only one way. Does it follow that Dima’s code is good? (Note that Dima and Serjozha are Russian, so they use the Cyrillic alphabet, which has $ 33$ letters! A word is any sequence of letters.)
(D Piontkovskiy, S Shalunov)
2019 Bulgaria EGMO TST, 1
Let $x_1,\ldots,x_n$ be a sequence with each term equal to $0$ or $1$. Form a triangle as follows: its first row is $x_1,\ldots,x_n$ and if a row if $a_1, a_2, \ldots, a_m$, then the next row is $a_1 + a_2, a_2 + a_3, \ldots, a_{m-1} + a_m$ where the addition is performed modulo $2$ (so $1+1=0$). For example, starting from $1$, $0$, $1$, $0$, the second row is $1$, $1$, $1$, the third one is $0$, $0$ and the fourth one is $0$.
A sequence is called good it is the same as the sequence formed by taking the last element of each row, starting from the last row (so in the above example, the sequence is $1010$ and the corresponding sequence from last terms is $0010$ and they are not equal in this case). How many possibilities are there for the sequence formed by taking the first element of each row, starting from the last row, which arise from a good sequence?
2017 F = ma, 20
20) A particle of mass m moving at speed $v_0$ collides with a particle of mass $M$ which is originally at rest. The fractional momentum transfer $f$ is the absolute value of the final momentum of $M$ divided by the initial momentum of $m$.
If the collision is completely $inelastic$ under what condition will the fractional momentum transfer between the two objects be a maximum?
A) $\frac{m}{M} \ll 1$
B) $0.5 < \frac{m}{M} < 1$
C) $m = M$
D) $1 < \frac{m}{M} < 2$
E) $\frac{m}{M} \gg 1$
2013 Tournament of Towns, 3
There is a $19\times19$ board. Is it possible to mark some $1\times 1$ squares so that each of $10\times 10$ squares contain different number of marked squares?
2009 Canadian Mathematical Olympiad Qualification Repechage, 6
Triangle $ABC$ is right-angled at $C$. $AQ$ is drawn parallel to $BC$ with $Q$ and $B$ on opposite sides of $AC$ so that when $BQ$ is drawn, intersecting $AC$ at $P$, we have $PQ = 2AB$. Prove that $\angle ABC = 3\angle PBC$.
2007 Spain Mathematical Olympiad, Problem 1
Let $a_0, a_1, a_2, a_3, a_4$ be five positive numbers in the arithmetic progression with a difference $d$. Prove that $a^3_2 \leq \frac{1}{10}(a^3_0 + 4a^3_1 + 4a^3_3 + a^3_4).$
2001 Turkey Team Selection Test, 2
A circle touches to diameter $AB$ of a unit circle with center $O$ at $T$ where $OT>1$. These circles intersect at two different points $C$ and $D$. The circle through $O$, $D$, and $C$ meet the line $AB$ at $P$ different from $O$. Show that
\[|PA|\cdot |PB| = \dfrac {|PT|^2}{|OT|^2}.\]
2003 Germany Team Selection Test, 2
Given a triangle $ABC$ and a point $M$ such that the lines $MA,MB,MC$ intersect the lines $BC,CA,AB$ in this order in points $D,E$ and $F,$ respectively. Prove that there are numbers $\epsilon_1, \epsilon_2, \epsilon_3 \in \{-1, 1\}$ such that:
\[\epsilon_1 \cdot \frac{MD}{AD} + \epsilon_2 \cdot \frac{ME}{BE} + \epsilon_3 \cdot \frac{MF}{CF} = 1.\]
2005 All-Russian Olympiad, 4
A white plane is partitioned onto cells (in a usual way). A finite number of cells are coloured black. Each black cell has an even (0, 2 or 4) adjacent (by the side) white cells. Prove that one may colour each white cell in green or red such that every black cell will have equal number of red and green adjacent cells.
1990 Czech and Slovak Olympiad III A, 5
In a country every two towns are connected by exactly one one-way road. Each road is intended either for cars or for cyclists. The roads cross only in towns, otherwise interchanges are used as road junctions. Show that there is a town from which you can go to any other town without changing the means of transport.
2016 NIMO Problems, 2
In the $\textit{Fragmented Game of Spoons}$, eight players sit in a row, each with a hand of four cards. Each round, the first player in the row selects the top card from the stack of unplayed cards and either passes it to the second player, which occurs with probability $\tfrac12$, or swaps it with one of the four cards in his hand, each card having an equal chance of being chosen, and passes the new card to the second player. The second player then takes the card from the first player and chooses a card to pass to the third player in the same way. Play continues until the eighth player is passed a card, at which point the card he chooses to pass is removed from the game and the next round begins. To win, a player must hold four cards of the same number, one of each suit.
During a game, David is the eighth player in the row and needs an Ace of Clubs to win. At the start of the round, the dealer picks up a Ace of Clubs from the deck. Suppose that Justin, the fifth player, also has a Ace of Clubs, and that all other Ace of Clubs cards have been removed. The probability that David is passed an Ace of Clubs during the round is $\tfrac mn$, where $m$ and $n$ are positive integers with $\gcd(m, n) = 1.$ Find $100m + n.$
[i]Proposed by David Altizio[/i]
2016 ASDAN Math Tournament, 24
Alex, Bill, and Charlie want to play a game of DotA. They each come online at a uniformly random time between $8:00$ and $8:05\text{ }\text{PM}$, and each person queues for $2$ minutes. However, if any of them sees any other of them online while queuing, they merge parties and restart the queue, again waiting for $2$ minutes starting from the merger time.
For example, suppose that Alex logs in at $8:00\text{ PM}$, Bill logs in at $8:01\text{ PM}$, and Charlie logs in at $8:02:30\text{ PM}$ ($30$ seconds past $8:02\text{ PM}$). At $8:01\text{ PM}$, Alex and Bill would merge parties and queue for $2$ minutes starting at $8:01\text{ PM}$. At $8:02:30\text{ PM}$, Charlie would merge with Alex and Bill’s party, since Alex and Bill have waited together for only $1.5$ minutes.
What is the probability that they will play as a party of $3$?
2006 QEDMO 3rd, 6
The incircle of a triangle $ABC$ touches its sides $BC$, $CA$, $AB$ at the points $X$, $Y$, $Z$, respectively. Let $X^{\prime}$, $Y^{\prime}$, $Z^{\prime}$ be the reflections of these points $X$, $Y$, $Z$ in the external angle bisectors of the angles $CAB$, $ABC$, $BCA$, respectively. Show that $Y^{\prime}Z^{\prime}\parallel BC$, $Z^{\prime}X^{\prime}\parallel CA$ and $X^{\prime}Y^{\prime}\parallel AB$.
2024 Indonesia TST, N
Find all functions $f:\mathbb{N} \rightarrow \mathbb{N}$ such that for every prime number $p$ and natural number $x$,
$$\{ x,f(x),\cdots f^{p-1}(x) \} $$
is a complete residue system modulo $p$. With $f^{k+1}(x)=f(f^k(x))$ for every natural number $k$ and $f^1(x)=f(x)$.
[i]Proposed by IndoMathXdZ[/i]
2011 Junior Balkan Team Selection Tests - Romania, 3
Let $ABC$ be a triangle, $I_a$ the center of the excircle at side $BC$, and $M$ its reflection across $BC$. Prove that $AM$ is parallel to the Euler line of the triangle $BCI_a$.
2011 AMC 12/AHSME, 13
Brian writes down four integers $w > x > y > z$ whose sum is $44$. The pairwise positive differences of these numbers are $1,3,4,5,6,$ and $9$. What is the sum of the possible values for $w$?
$ \textbf{(A)}\ 16 \qquad
\textbf{(B)}\ 31 \qquad
\textbf{(C)}\ 48 \qquad
\textbf{(D)}\ 62 \qquad
\textbf{(E)}\ 93 $
2021 All-Russian Olympiad, 4
Given an acute triangle $ABC$, point $D$ is chosen on the side $AB$ and a point $E$ is chosen on the extension of $BC$ beyond $C$. It became known that the line through $E$ parallel to $AB$ is tangent to the circumcircle of $\triangle ADC$. Prove that one of the tangents from $E$ to the circumcircle of $\triangle BCD$ cuts the angle $\angle ABE$ in such a way that a triangle similar to $\triangle ABC$ is formed.
2015 China Team Selection Test, 2
Let $a_1,a_2,a_3, \cdots ,a_n$ be positive real numbers. For the integers $n\ge 2$, prove that\[ \left (\frac{\sum_{j=1}^{n} \left (\prod_{k=1}^{j}a_k \right )^{\frac{1}{j}}}{\sum_{j=1}^{n}a_j} \right )^{\frac{1}{n}}+\frac{\left (\prod_{i=1}^{n}a_i \right )^{\frac{1}{n}}}{\sum_{j=1}^{n} \left (\prod_{k=1}^{j}a_k \right )^{\frac{1}{j}}}\le \frac{n+1}{n}\]
2011 AIME Problems, 12
Six men and some number of women stand in a line in random order. Let $p$ be the probability that a group of at least four men stand together in the line, given that every man stands next to at least one other man. Find the least number of women in the line such that $p$ does not exceed 1 percent.
Russian TST 2020, P3
Let $I$ be the incentre of acute-angled triangle $ABC$. Let the incircle meet $BC, CA$, and $AB$ at $D, E$, and $F,$ respectively. Let line $EF$ intersect the circumcircle of the triangle at $P$ and $Q$, such that $F$ lies between $E$ and $P$. Prove that $\angle DPA + \angle AQD =\angle QIP$.
(Slovakia)
2012 Online Math Open Problems, 1
Calvin was asked to evaluate $37 + 31 \times a$ for some number $a$. Unfortunately, his paper was tilted 45 degrees, so he mistook multiplication for addition (and vice versa) and evaluated $37 \times 31 + a$ instead. Fortunately, Calvin still arrived at the correct answer while still following the order of operations. For what value of $a$ could this have happened?
[i]Ray Li.[/i]
2021 IMO Shortlist, A5
Let $n\geq 2$ be an integer and let $a_1, a_2, \ldots, a_n$ be positive real numbers with sum $1$. Prove that $$\sum_{k=1}^n \frac{a_k}{1-a_k}(a_1+a_2+\cdots+a_{k-1})^2 < \frac{1}{3}.$$
2020-2021 OMMC, 13
Find the number of nonnegative integers $n < 29$ such that there exists positive integers $x,y$ where $$x^2+5xy-y^2$$ has remainder $n$ when divided by $29$.
2018 JBMO Shortlist, G1
Let $H$ be the orthocentre of an acute triangle $ABC$ with $BC > AC$, inscribed in a circle $\Gamma$. The circle with centre $C$ and radius $CB$ intersects $\Gamma$ at the point $D$, which is on the arc $AB$ not containing $C$. The circle with centre $C$ and radius $CA$ intersects the segment $CD$ at the point $K$. The line parallel to $BD$ through $K$, intersects $AB$ at point $L$. If $M$ is the midpoint of $AB$ and $N$ is the foot of the perpendicular from $H$ to $CL$, prove that the line $MN$ bisects the segment $CH$.