This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2018 Moscow Mathematical Olympiad, 4

$ABCD$ is convex and $AB\not \parallel CD,BC \not \parallel DA$. $P$ is variable point on $AD$. Circumcircles of $\triangle ABP$ and $\triangle CDP$ intersects at $Q$. Prove, that all lines $PQ$ goes through fixed point.

Kvant 2021, M2667

Does there exist a set $S$ of $100$ points in a plane such that the center of mass of any $10$ points in $S$ is also a point in $S$?

2024 Indonesia TST, 1

Tags: algebra
Professor Oak is feeding his $100$ Pokémon. Each Pokémon has a bowl whose capacity is a positive real number of kilograms. These capacities are known to Professor Oak. The total capacity of all the bowls is $100$ kilograms. Professor Oak distributes $100$ kilograms of food in such a way that each Pokémon receives a non-negative integer number of kilograms of food (which may be larger than the capacity of the bowl). The [i]dissatisfaction level[/i] of a Pokémon who received $N$ kilograms of food and whose bowl has a capacity of $C$ kilograms is equal to $\lvert N-C\rvert$. Find the smallest real number $D$ such that, regardless of the capacities of the bowls, Professor Oak can distribute food in a way that the sum of the dissatisfaction levels over all the $100$ Pokémon is at most $D$. [i]Oleksii Masalitin, Ukraine[/i]

2016 CCA Math Bonanza, I12

Tags:
Let $f$ be a function from the set $X = \{1,2, \dots, 10\}$ to itself. Call a partition ($S$, $T$) of $X$ $f-balanced$ if for all $s \in S$ we have $f(s) \in T$ and for all $t \in T$ we have $f(t) \in S$. (A partition $(S, T)$ is a pair of subsets $S$ and $T$ of $X$ such that $S\cap T = \emptyset$ and $S \cup T = X$. Note that $(S, T)$ and $(T, S)$ are considered the same partition). Let $g(f)$ be the number of $f-balanced$ partitions, and let $m$ equal the maximum value of $g$ over all functions $f$ from $X$ to itself. If there are $k$ functions satisfying $g(f) = m$, determine $m+k$. [i]2016 CCA Math Bonanza Individual #12[/i]

2015 Canada National Olympiad, 5

Let $p$ be a prime number for which $\frac{p-1}{2}$ is also prime, and let $a,b,c$ be integers not divisible by $p$. Prove that there are at most $1+\sqrt {2p}$ positive integers $n$ such that $n<p$ and $p$ divides $a^n+b^n+c^n$.

2023 International Zhautykov Olympiad, 3

Let $a_1, a_2, \cdots, a_k$ be natural numbers. Let $S(n)$ be the number of solutions in nonnegative integers to $a_1x_1 + a_2x_2 + \cdots + a_kx_k = n$. Suppose $S(n) \neq 0$ for all big enough $n$. Show that for all sufficiently large $n$, we have $S(n+1) < 2S(n)$.

2009 All-Russian Olympiad Regional Round, 10.7

Positive numbers $ x_1, x_2, . . ., x_{2009}$ satisfy the equalities $$x^2_1 - x_1x_2 +x^2_2 =x^2_2 -x_2x_3+x^2_3=x^2_3 -x_3x_4+x^2_4= ...= x^2_{2008}- x_{2008}x_{2009}+x^2_{2009}= x^2_{2009}-x_{2009}x_1+x^2_1$$. Prove that the numbers $ x_1, x_2, . . ., x_{2009}$ are equal.

2022 Saint Petersburg Mathematical Olympiad, 7

Given are $n$ distinct natural numbers. For any two of them, the one is obtained from the other by permuting its digits (zero cannot be put in the first place). Find the largest $n$ such that it is possible all these numbers to be divisible by the smallest of them?

2013 239 Open Mathematical Olympiad, 1

Tags:
Among the divisors of a natural number $n$, we have numbers such that when they are devided by $2013$, give us remainders $1001, 1002, \ldots, 2012$. Prove that among the divisors of the number $n^2$, there exist numbers such that when they are divided by $2013$, give us reminders $1, 2, 3, \ldots, 2012$.

2018 Sharygin Geometry Olympiad, 10

Tags: geometry
In the plane, $2018$ points are given such that all distances between them are different. For each point, mark the closest one of the remaining points. What is the minimal number of marked points?

2014 Serbia JBMO TST, 4

There $100$ people seated at a round table $50$ women and $50$ men. Show that there are two people of opposite gender that stay between two people of opposite gender. (WWMM, MMWW, WMWM, MWMW)

2023 USA IMOTST, 2

Let $m$ and $n$ be fixed positive integers. Tsvety and Freyja play a game on an infinite grid of unit square cells. Tsvety has secretly written a real number inside of each cell so that the sum of the numbers within every rectangle of size either $m$ by $n$ or $n$ by $m$ is zero. Freyja wants to learn all of these numbers. One by one, Freyja asks Tsvety about some cell in the grid, and Tsvety truthfully reveals what number is written in it. Freyja wins if, at any point, Freyja can simultaneously deduce the number written in every cell of the entire infinite grid (If this never occurs, Freyja has lost the game and Tsvety wins). In terms of $m$ and $n$, find the smallest number of questions that Freyja must ask to win, or show that no finite number of questions suffice. [i]Nikolai Beluhov[/i]

2008 National Olympiad First Round, 21

Let $ABC$ be a right triangle with $m(\widehat{A})=90^\circ$. Let $APQR$ be a square with area $9$ such that $P\in [AC]$, $Q\in [BC]$, $R\in [AB]$. Let $KLMN$ be a square with area $8$ such that $N,K\in [BC]$, $M\in [AB]$, and $L\in [AC]$. What is $|AB|+|AC|$? $ \textbf{(A)}\ 8 \qquad\textbf{(B)}\ 10 \qquad\textbf{(C)}\ 12 \qquad\textbf{(D)}\ 14 \qquad\textbf{(E)}\ 16 $

2012 International Zhautykov Olympiad, 2

Equilateral triangles $ACB'$ and $BDC'$ are drawn on the diagonals of a convex quadrilateral $ABCD$ so that $B$ and $B'$ are on the same side of $AC$, and $C$ and $C'$ are on the same sides of $BD$. Find $\angle BAD + \angle CDA$ if $B'C' = AB+CD$.

2008 Tournament Of Towns, 5

We may permute the rows and the columns of the table below. How may different tables can we generate? 1 2 3 4 5 6 7 7 1 2 3 4 5 6 6 7 1 2 3 4 5 5 6 7 1 2 3 4 4 5 6 7 1 2 3 3 4 5 6 7 1 2 2 3 4 5 6 7 1

2010 Tuymaada Olympiad, 1

Baron Münchausen boasts that he knows a remarkable quadratic triniomial with positive coefficients. The trinomial has an integral root; if all of its coefficients are increased by $1$, the resulting trinomial also has an integral root; and if all of its coefficients are also increased by $1$, the new trinomial, too, has an integral root. Can this be true?

2020 AMC 12/AHSME, 7

Seven cubes, whose volumes are $1$, $8$, $27$, $64$, $125$, $216$, and $343$ cubic units, are stacked vertically to form a tower in which the volumes of the cubes decrease from bottom to top. Except for the bottom cube, the bottom face of each cube lies completely on top of the cube below it. What is the total surface area of the tower (including the bottom) in square units? $\textbf{(A) } 644 \qquad \textbf{(B) } 658 \qquad \textbf{(C) } 664 \qquad \textbf{(D) } 720 \qquad \textbf{(E) } 749$

1989 Tournament Of Towns, (240) 4

The set of natural numbers is represented as a union of pairwise disjoint subsets, whose elements form infinite arithmetic progressions with positive differences $d_1,d_2,d_3,...$. Is it possible that the sum $\frac{1}{d_1}+\frac{1}{d_1}+\frac{1}{d_3}+... $ does not exceed $0.9$? Consider the cases where (a) the total number of progressions is finite, and (b) the number of progressions is infinite. (In this case the condition that $\frac{1}{d_1}+\frac{1}{d_1}+\frac{1}{d_3}+... $ does not exceed $0.9$ should be taken to mean that the sum of any finite number of terms does not exceed 0.9.) (A. Tolpugo, Kiev)

2011 Today's Calculation Of Integral, 673

Let $f(x)=\int_0^ x \frac{1}{1+t^2}dt.$ For $-1\leq x<1$, find $\cos \left\{2f\left(\sqrt{\frac{1+x}{1-x}}\right)\right\}.$ [i]2011 Ritsumeikan University entrance exam/Science and Technology[/i]

2006 MOP Homework, 3

Tags: algebra
Find the number of all infinite sequences $a_1$, $a_2$, ... of positive integers such that $a_n+a_{n+1}=2a_{n+2}a_{n+3}+2005$ for all positive integers $n$.

2021 Malaysia IMONST 2, 3

Tags: recurrence
Given a sequence of positive integers $$a_1, a_2, a_3, a_4, a_5, \dots$$ such that $a_2 > a_1$ and $a_{n+2} = 3a_{n+1} - 2a_n$ for all $n \geq 1$. Prove that $a_{2021} > 2^{2019}$.

2009 Mathcenter Contest, 5

For $n\in\mathbb{N}$, prove that $2^n$ can begin with any sequence of digits. Hint: $\log 2$ is irrational number.

2007 Estonia National Olympiad, 5

In a grid of dimensions $n \times n$, a part of the squares is marked with crosses such that in each at least half of the $4 \times 4$ squares are marked. Find the least possible the total number of marked squares in the grid.

2013 Harvard-MIT Mathematics Tournament, 12

Tags: hmmt , inequalities
For how many integers $1\leq k\leq 2013$ does the decimal representation of $k^k$ end with a $1$?

2018 Saint Petersburg Mathematical Olympiad, 1

Prove, that for every natural $N$ exists $k$, such that $N=a_02^0+a_12^1+...+a_k2^k$, where $a_0,a_1,...a_k$ are $1$ or $2$