Found problems: 85335
2014 PUMaC Geometry B, 2
Consider the pyramid $OABC$. Let the equilateral triangle $ABC$ with side length $6$ be the base. Also $9=OA=OB=OC$. Let $M$ be the midpoint of $AB$. Find the square of the distance from $M$ to $OC$.
2005 German National Olympiad, 5
[b](a)[/b] [Problem for class 11]
Let r be the inradius and $r_a$, $r_b$, $r_c$ the exradii of a triangle ABC. Prove that $\frac{1}{r}=\frac{1}{r_a}+\frac{1}{r_b}+\frac{1}{r_c}$.
[b](b)[/b] [Problem for classes 12/13]
Let r be the radius of the insphere and let $r_a$, $r_b$, $r_c$, $r_d$ the radii of the four exspheres of a tetrahedron ABCD. (An [i]exsphere[/i] of a tetrahedron is a sphere touching one sideface and the extensions of the three other sidefaces.)
Prove that $\frac{2}{r}=\frac{1}{r_a}+\frac{1}{r_b}+\frac{1}{r_c}+\frac{1}{r_d}$.
I am really sorry for posting these, but else, Orl will probably post them. This time, we really did not have any challenging problem on the DeMO. But at least, the problems were simple enough that I solved all of them. ;)
Darij
1977 IMO, 3
Let $\mathbb{N}$ be the set of positive integers. Let $f$ be a function defined on $\mathbb{N}$, which satisfies the inequality $f(n + 1) > f(f(n))$ for all $n \in \mathbb{N}$. Prove that for any $n$ we have $f(n) = n.$
1993 National High School Mathematics League, 3
Horizontal line $m$ passes the center of circle $\odot O$. Line $l\perp m$, $l$ and $m$ intersect at $M$, and $M$ is on the right side of $O$. Three points $A,B,C$ ($B$ is in the middle) lie on line $l$, which are outside the circle, above line $m$. $AP,BQ,CR$ are tangent to $\odot O$ at $P,Q,R$. Prove:
[b](a)[/b] If $l$ is tangent to $\odot O$, then $AB\cdot CR+BC\cdot AP=AC\cdot BQ$.
[b](b)[/b] If $l$ and $\odot O$ intersect, then $AB\cdot CR+BC\cdot AP<AC\cdot BQ$.
[b](c)[/b] If $l$ and $\odot O$ are apart, then $AB\cdot CR+BC\cdot AP>AC\cdot BQ$.
1968 Yugoslav Team Selection Test, Problem 5
Let $n$ be an integer greater than $1$. Let $x\in\mathbb R$.
(a) Evaluate $S(x,n)=\sum(x+p)(x+q)$, where the summation is over all pairs $(p,q)$ of different numbers from $\{1,2,\ldots,n\}$.
(b) Do there exist integers $x,n$ for which $S(x,n)=0$?
2020 International Zhautykov Olympiad, 1
Given natural number n such that, for any natural $a,b$ number $2^a3^b+1$ is not divisible by $n$.Prove that $2^c+3^d$ is not divisible by $n$ for any natural $c$ and $d$
2005 QEDMO 1st, 3 (C2)
At a turnament between $n$ persons, everyone playes exactly one time against everyone else, and at one game there is everytime a winner and a looser.
Prove that one can arrange the participants in a chain$P_1 \to P_2 \to ... \to P_n$ such that the $i$-th person has won against the $(i+1)$-th person.
2020 IMO Shortlist, G3
Let $ABCD$ be a convex quadrilateral with $\angle ABC>90$, $CDA>90$ and $\angle DAB=\angle BCD$. Denote by $E$ and $F$ the reflections of $A$ in lines $BC$ and $CD$, respectively. Suppose that the segments $AE$ and $AF$ meet the line $BD$ at $K$ and $L$, respectively. Prove that the circumcircles of triangles $BEK$ and $DFL$ are tangent to each other.
$\emph{Slovakia}$
2020 Korean MO winter camp, #6
Find all strictly increasing sequences $\{a_n\}_{n=0}^\infty$ of positive integers such that for all positive integers $k,m,n$
$$\frac{a_{n+1} +a_{n+2} +\dots +a_{n+k}}{k+m}$$ is not an integer larger than $2020$.
2011 Postal Coaching, 2
Let $x$ be a positive real number and let $k$ be a positive integer. Assume that $x^k+\frac{1}{x^k}$ and $x^{k+1}+\frac{1}{x^{k+1}}$ are both rational numbers. Prove that $x+\frac{1}{x}$ is also a rational number.
2012 May Olympiad, 3
Let $ABC$ be a triangle such that $\angle{ABC} = 2\angle{BCA}$ and $\angle{CAB}>90^\circ$. Let $M$ be the midpoint of $BC$. The line perpendicular to $AC$ that passes through $C$ cuts the line $AB$ at point $D$. Show that $\angle{AMB} = \angle{DMC}$.
1981 USAMO, 4
The sum of the measures of all the face angles of a given complex polyhedral angle is equal to the sum of all its dihedral angles. Prove that the polyhedral angle is a trihedral angle.
$\mathbf{Note:}$ A convex polyhedral angle may be formed by drawing rays from an exterior point to all points of a convex polygon.
2013 All-Russian Olympiad, 1
$101$ distinct numbers are chosen among the integers between $0$ and $1000$. Prove that, among the absolute values of their pairwise differences, there are ten different numbers not exceeding $100$.
2023 Princeton University Math Competition, A5 / B7
Let $\vartriangle ABC$ have $AB = 15$, $AC = 20$, and $BC = 21$. Suppose $\omega$ is a circle passing through $A$ that is tangent to segment $BC$. Let point $D\ne A$ be the second intersection of AB with $\omega$, and let point $E \ne A$ be the second intersection of $AC$ with $\omega$. Suppose $DE$ is parallel to $BC$. If $DE = \frac{a}{b}$ , where $a$, $b$ are relatively prime positive integers, find $a + b$.
2020 MBMT, 18
Let $w, x, y, z$ be integers from $0$ to $3$ inclusive. Find the number of ordered quadruples of $(w, x, y, z)$ such that $5x^2 + 5y^2 + 5z^2 - 6wx-6wy -6wz$ is divisible by $4$.
[i]Proposed by Timothy Qian[/i]
2007 District Olympiad, 3
Let $ABC$ be a triangle with $BC=a$ $AC=b$ $AB=c$. For each line $\Delta$ we denote $d_{A}, d_{B}, d_{C}$ the distances from $A,B, C$ to $\Delta$ and we consider the expresion $E(\Delta)=ad_{A}^{2}+bd_{B}^{2}+cd_{C}^{2}$. Prove that if $E(\Delta)$ is minimum, then $\Delta$ passes through the incenter of $\Delta ABC$.
2025 Thailand Mathematical Olympiad, 2
A school sent students to compete in an academic olympiad in $11$ differents subjects, each consist of $5$ students. Given that for any $2$ different subjects, there exists a student compete in both subjects. Prove that there exists a student who compete in at least $4$ different subjects.
1974 IMO Longlists, 17
Show that there exists a set $S$ of $15$ distinct circles on the surface of a sphere, all having the same radius and such that $5$ touch exactly $5$ others, $5$ touch exactly $4$ others, and $5$ touch exactly $3$ others.
[i][General Problem: http://www.artofproblemsolving.com/Forum/viewtopic.php?f=46&t=384764][/i]
2022 HMNT, 12
Candice starts driving home from work at $5{:}00 \ \text{PM}.$ Starting at exactly $5{:}01 \ \text{PM},$ and every minute after that, Candice encounters a new speed limit sign and slows down by $1$ mph. Candice’s speed, in miles per hour, is always a positive integer. Candice drives for $2/3$ of a mile in total. She drives for a whole number of minutes, and arrives at her house driving slower than when she left. What time is it when she gets home?
1997 Mexico National Olympiad, 2
In a triangle $ABC, P$ and $P'$ are points on side $BC, Q$ on side $CA$, and $R $ on side $AB$, such that $\frac{AR}{RB}=\frac{BP}{PC}=\frac{CQ}{QA}=\frac{CP'}{P'B}$ . Let $G$ be the centroid of triangle $ABC$ and $K$ be the intersection point of $AP'$ and $RQ$. Prove that points $P,G,K$ are collinear.
2004 Belarusian National Olympiad, 1
A connected graph with at least one vertex of an odd degree is given. Show that one can color the edges of the graph red and blue in such a way that, for each vertex, the absolute difference between the numbers of red and blue edges at that vertex does not exceed 1.
2010 AMC 10, 5
The area of a circle whose circumference is $ 24\pi$ is $ k\pi$. What is the value of $ k$?
$ \textbf{(A)}\ 6 \qquad
\textbf{(B)}\ 12 \qquad
\textbf{(C)}\ 24 \qquad
\textbf{(D)}\ 36 \qquad
\textbf{(E)}\ 144$
2023 CMWMC, R2
[b]p4.[/b] What is gcd $(2^6 - 1, 2^9 - 1)$?
[b]p5.[/b] Sarah is walking along a sidewalk at a leisurely speed of $\frac12$ m/s. Annie is some distance behind her, walking in the same direction at a faster speed of $s$ m/s. What is the minimum value of $s$ such that Sarah and Annie spend no more than one second within one meter of each other?
[b]p6.[/b] You have a choice to play one of two games. In both games, a coin is flipped four times. In game $1$, if (at least) two flips land heads, you win. In game $2$, if (at least) two consecutive flips land heads, you win. Let $N$ be the number of the game that gives you a better chance of winning, and let $p$ be the absolute difference in the probabilities of winning each game. Find $N + p$.
PS. You should use hide for answers.
2014 China Team Selection Test, 2
Let $A_1A_2...A_{101}$ be a regular $101$-gon, and colour every vertex red or blue. Let $N$ be the number of obtuse triangles satisfying the following: The three vertices of the triangle must be vertices of the $101$-gon, both the vertices with acute angles have the same colour, and the vertex with obtuse angle have different colour.
$(1)$ Find the largest possible value of $N$.
$(2)$ Find the number of ways to colour the vertices such that maximum $N$ is acheived. (Two colourings a different if for some $A_i$ the colours are different on the two colouring schemes).
2018 CHMMC (Fall), 7
For a positive number $n$, let $g(n)$ be the product of all $1 \le k \le n$ such that gcd $(k, n) =1$, and say that $n > 1$ is reckless if $n$ is odd and $g(n) \equiv -1$ (mod $n$). Find the number of reckless numbers less than $50$.