This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2016 JBMO Shortlist, 3

A trapezoid $ABCD$ ($AB || CF$,$AB > CD$) is circumscribed.The incircle of the triangle $ABC$ touches the lines $AB$ and $AC$ at the points $M$ and $N$,respectively.Prove that the incenter of the trapezoid $ABCD$ lies on the line $MN$.

1985 IMO Longlists, 36

Determine whether there exist $100$ distinct lines in the plane having exactly $1985$ distinct points of intersection

2003 May Olympiad, 4

Bob plotted $2003$ green points on the plane, so all triangles with three green vertices have area less than $1$. Prove that the $2003$ green points are contained in a triangle $T$ of area less than $4$.

2013 Kosovo National Mathematical Olympiad, 5

Tags: geometry
Let $ABC$ be an equilateral triangle, with sidelength equal to $a$. Let $P$ be a point in the interior of triangle $ABC$, and let $D,E$ and $F$ be the feet of the altitudes from $P$ on $AB, BC$ and $CA$, respectively. Prove that $\frac{|PD|+|PE|+|PF|}{3a}=\frac{\sqrt{3}}{6}$

2005 National Olympiad First Round, 27

Tags:
What is the maximum value of the difference between the largest real root and the smallest real root of the equation system \[\begin{array}{rcl} ax^2 + bx+ c &=& 0 \\ bx^2 + cx+ a &=& 0 \\ cx^2 + ax+ b &=& 0 \end{array}\], where at least one of the reals $a,b,c$ is non-zero? $ \textbf{(A)}\ 0 \qquad\textbf{(B)}\ 1 \qquad\textbf{(C)}\ \sqrt 2 \qquad\textbf{(D)}\ 3\sqrt 2 \qquad\textbf{(E)}\ \text{There is no upper-bound} $

2024 India IMOTC, 17

Fix a positive integer $a > 1$. Consider triples $(f(x), g(x), h(x))$ of polynomials with integer coefficients, such that 1. $f$ is a monic polynomial with $\deg f \ge 1$. 2. There exists a positive integer $N$ such that $g(x)>0$ for $x \ge N$ and for all positive integers $n \ge N$, we have $f(n) \mid a^{g(n)} + h(n)$. Find all such possible triples. [i]Proposed by Mainak Ghosh and Rijul Saini[/i]

1949-56 Chisinau City MO, 2

What is the last digit of $777^{777}$?

2021 Azerbaijan EGMO TST, 3

Let $s \geq 2$ and $n \geq k \geq 2$ be integes, and let $A$ be a subset of $\{1, 2, . . . , n\}^k$ of size at least $2sk^2n^{k-2}$ such that any two members of $A$ share some entry. Prove that there are an integer $p \leq k$ and $s+2$ members $A_1, A_2, . . . , A_{s+2}$ of $A$ such that $A_i$ and $A_j$ share the $p$-th entry alone, whenever $i$ and $j$ are distinct. [i]Miroslav Marinov, Bulgaria[/i]

LMT Speed Rounds, 2011.17

Tags: geometry
Let $ABC$ be a triangle with $AB = 15$, $AC = 20$, and right angle at $A$. Let $D$ be the point on $\overline{BC}$ such that $\overline{AD}$ is perpendicular to $\overline{BC}$, and let $E$ be the midpoint of $\overline{AC}$. If $F$ is the point on $\overline{BC}$ such that $\overline{AD} \parallel \overline{EF}$, what is the area of quadrilateral $ADFE$?

2013 AIME Problems, 13

In $\triangle ABC$, $AC = BC$, and point $D$ is on $\overline{BC}$ so that $CD = 3 \cdot BD$. Let $E$ be the midpoint of $\overline{AD}$. Given that $CE = \sqrt{7}$ and $BE = 3$, the area of $\triangle ABC$ can be expressed in the form $m\sqrt{n}$, where $m$ and $n$ are positive integers and $n$ is not divisible by the square of any prime. Find $m+n$.

2014 JHMMC 7 Contest, 9

Tags: factorial
Let $n!=n\cdot (n-1)\cdot (n-2)\cdot \ldots \cdot 2\cdot 1$.For example, $5! = 5\cdot 4\cdot 3 \cdot 2\cdot 1 = 120.$ Compute $\frac{(6!)^2}{5!\cdot 7!}$.

Oliforum Contest II 2009, 2

Tags: inequalities
Define $ \phi$ the positive real root of $ x^2 \minus{} x \minus{} 1$ and let $ a,b,c,d$ be positive real numbers such that $ (a \plus{} 2b)^2 \equal{} 4c^2 \plus{} 1$. Show that $ \displaystyle 2d^2 \plus{} a^2\left(\phi \minus{} \frac {1}{2}\right) \plus{} b^2\left(\frac {1}{\phi \minus{} 1} \plus{} 2\right) \plus{} 2 \ge 4(c \minus{} d) \plus{} 2\sqrt {d^2 \plus{} 2d}$ and find all cases of equality. [i](A.Naskov)[/i]

2018 PUMaC Geometry B, 1

Tags: geometry
Frist Campus Center is located $1$ mile north and $1$ mile west of Fine Hall. The area within $5$ miles of Fine Hall that is located north and east of Frist can be expressed in the form $\frac{a}{b} \pi - c$, where $a, b, c$ are positive integers and $a$ and $b$ are relatively prime. Find $a + b + c$.

2000 May Olympiad, 4

There is a cube of $3 \times 3 \times 3$ formed by the union of $27$ cubes of $1 \times 1 \times 1$. Some cubes are removed in such a way that those that remain continue to form a solid made up of cubes that are united by at least one facing the rest of the solid. When a cube is removed, those that remain do so in the same place they were. What is the maximum number of cubes that can be removed so that the area of the resulting solid is equal to the area of the original cube?

2010 Belarus Team Selection Test, 7.1

Find the smallest value of the expression $|3 \cdot 5^m - 11 \cdot 13^n|$ for all $m,n \in N$. (Folklore)

2011 Today's Calculation Of Integral, 733

Find $\lim_{n\to\infty} \int_0^1 x^2e^{-\left(\frac{x}{n}\right)^2}dx.$

2013 Tuymaada Olympiad, 5

Each face of a $7 \times 7 \times 7$ cube is divided into unit squares. What is the maximum number of squares that can be chosen so that no two chosen squares have a common point? [i]A. Chukhnov[/i]

2010 Romania Team Selection Test, 1

Given a positive integer number $n$, determine the minimum of \[\max \left\{\dfrac{x_1}{1 + x_1},\, \dfrac{x_2}{1 + x_1 + x_2},\, \cdots,\, \dfrac{x_n}{1 + x_1 + x_2 + \cdots + x_n}\right\},\] as $x_1, x_2, \ldots, x_n$ run through all non-negative real numbers which add up to $1$. [i]Kvant Magazine[/i]

2014 Czech and Slovak Olympiad III A, 4

$234$ viewers came to the cinema. Determine for which$ n \ge 4$ the viewers could be can be arranged in $n$ rows so that every viewer in $i$-th row gets to know just $j$ viewers in $j$-th row for any $i, j \in \{1, 2,... , n\}, i\ne j$. (The relationship of acquaintance is mutual.) (Tomáš Jurík)

2019 IFYM, Sozopol, 7

Let $G$ be a bipartite graph in which the greatest degree of a vertex is 2019. Let $m$ be the least natural number for which we can color the edges of $G$ in $m$ colors so that each two edges with a common vertex from $G$ are in different colors. Show that $m$ doesn’t depend on $G$ and find its value.

2014 China Girls Math Olympiad, 8

Let $n$ be a positive integer, and set $S$ be the set of all integers in $\{1,2,\dots,n\}$ which are relatively prime to $n$. Set $S_1 = S \cap \left(0, \frac n3 \right]$, $S_2 = S \cap \left( \frac n3, \frac {2n}3 \right]$, $S_3 = S \cap \left( \frac{2n}{3}, n \right]$. If the cardinality of $S$ is a multiple of $3$, prove that $S_1$, $S_2$, $S_3$ have the same cardinality.

1977 IMO Longlists, 14

There are $2^n$ words of length $n$ over the alphabet $\{0, 1\}$. Prove that the following algorithm generates the sequence $w_0, w_1, \ldots, w_{2^n-1}$ of all these words such that any two consecutive words differ in exactly one digit. (1) $w_0 = 00 \ldots 0$ ($n$ zeros). (2) Suppose $w_{m-1} = a_1a_2 \ldots a_n,\quad a_i \in \{0, 1\}$. Let $e(m)$ be the exponent of $2$ in the representation of $n$ as a product of primes, and let $j = 1 + e(m)$. Replace the digit $a_j$ in the word $w_{m-1}$ by $1 - a_j$. The obtained word is $w_m$.

1986 Traian Lălescu, 1.4

On the sides $ BC, CA $ and $ AB $ (extremities excluded) of the triangle $ ABC, $ consider the arbitrary points $ P,Q,R $ and the circumcenters $ O_1,O_2,O_3 $ of $ AQR,BRP,CPQ. $ Show that $ O_1O_2O_3\sim ABC. $

2011 Romania Team Selection Test, 1

Tags: function , algebra
Determine all real-valued functions $f$ on the set of real numbers satisfying \[2f(x)=f(x+y)+f(x+2y)\] for all real numbers $x$ and all non-negative real numbers $y$.

PEN S Problems, 7

Tags: trigonometry
Let $n$ be a positive integer. Show that \[\sum^{n}_{k=1}\tan^{2}\frac{k \pi}{2n+1}\] is an odd integer.