Found problems: 85335
2021 LMT Spring, A3
Find the greatest possible sum of integers $a$ and $b$ such that $\frac{2021!}{20^a\cdot 21^b}$ is a positive integer.
[i]Proposed by Aidan Duncan[/i]
1990 Baltic Way, 16
A closed polygonal line is drawn on a unit squared paper so that its vertices lie at lattice points and its sides have odd lengths. Prove that its number of sides is divisible by $4$.
2018 BmMT, Ind. Round
[b]p1.[/b] If $x$ is a real number that satisfies $\frac{48}{x} = 16$, find the value of $x$.
[b]p2.[/b] If $ABC$ is a right triangle with hypotenuse $BC$ such that $\angle ABC = 35^o$, what is $\angle BCA$ in degrees?
[img]https://cdn.artofproblemsolving.com/attachments/a/b/0f83dc34fb7934281e0e3f988ac34f653cc3f1.png[/img]
[b]p3.[/b] If $a\vartriangle b = a + b - ab$, find $4\vartriangle 9$.
[b]p4.[/b] Grizzly is $6$ feet tall. He measures his shadow to be $4$ feet long. At the same time, his friend Panda helps him measure the shadow of a nearby lamp post, and it is $6$ feet long. How tall is the lamp post in feet?
[b]p5.[/b] Jerry is currently twice as old as Tom was $7$ years ago. Tom is $6$ years younger than Jerry. How many years old is Tom?
[b]p6.[/b] Out of the $10, 000$ possible four-digit passcodes on a phone, how many of them contain only prime digits?
[b]p7.[/b] It started snowing, which means Moor needs to buy snow shoes for his $6$ cows and $7$ sky bison. A cow has $4$ legs, and a sky bison has $6$ legs. If Moor has 36 snow shoes already, how many more shoes does he need to buy? Assume cows and sky bison wear the same type of shoe and each leg gets one shoe.
[b]p8.[/b] How many integers $n$ with $1 \le n \le 100$ have exactly $3$ positive divisors?
[b]p9.[/b] James has three $3$ candies and $3$ green candies. $3$ people come in and each randomly take $2$ candies. What is the probability that no one got $2$ candies of the same color? Express your answer as a decimal or a fraction in lowest terms.
[b]p10.[/b] When Box flips a strange coin, the coin can land heads, tails, or on the side. It has a $\frac{1}{10}$probability of landing on the side, and the probability of landing heads equals the probability of landing tails. If Box flips a strange coin $3$ times, what is the probability that the number of heads flipped is equal to the number of tails flipped? Express your answer as a decimal or a fraction in lowest terms.
[b]p11.[/b] James is travelling on a river. His canoe goes $4$ miles per hour upstream and $6$ miles per hour downstream. He travels $8$ miles upstream and then $8$ miles downstream (to where he started). What is his average speed, in miles per hour? Express your answer as a decimal or a fraction in lowest terms.
[b]p12.[/b] Four boxes of cookies and one bag of chips cost exactly $1000$ jelly beans. Five bags of chips and one box of cookies cost less than $1000$ jelly beans. If both chips and cookies cost a whole number of jelly beans, what is the maximum possible cost of a bag of chips?
[b]p13.[/b] June is making a pumpkin pie, which takes the shape of a truncated cone, as shown below. The pie tin is $18$ inches wide at the top, $16$ inches wide at the bottom, and $1$ inch high. How many cubic inches of pumpkin filling are needed to fill the pie?
[img]https://cdn.artofproblemsolving.com/attachments/7/0/22c38dd6bc42d15ad9352817b25143f0e4729b.png[/img]
[b]p14.[/b] For two real numbers $a$ and $b$, let $a\# b = ab - 2a - 2b + 6$. Find a positive real number $x$ such that $(x\#7) \#x = 82$.
[b]p15.[/b] Find the sum of all positive integers $n$ such that $\frac{n^2 + 20n + 51}{n^2 + 4n + 3}$ is an integer.
[b]p16.[/b] Let $ABC$ be a right triangle with hypotenuse $AB$ such that $AC = 36$ and $BC = 15$. A semicircle is inscribed in $ABC$ as shown, such that the diameter $XC$ of the semicircle lies on side $AC$ and that the semicircle is tangent to $AB$. What is the radius of the semicircle?
[img]https://cdn.artofproblemsolving.com/attachments/4/2/714f7dfd09f6da1d61a8f910b5052e60dcd2fb.png[/img]
[b]p17.[/b] Let $a$ and $b$ be relatively prime positive integers such that the product $ab$ is equal to the least common multiple of $16500$ and $990$. If $\frac{16500}{a}$ and $\frac{990}{b}$ are both integers, what is the minimum value of $a + b$?
[b]p18.[/b] Let $x$ be a positive real number so that $x - \frac{1}{x} = 1$. Compute $x^8 - \frac{1}{x^8}$ .
[b]p19.[/b] Six people sit around a round table. Each person rolls a standard $6$-sided die. If no two people sitting next to each other rolled the same number, we will say that the roll is valid. How many dierent rolls are valid?
[b]p20.[/b] Given that $\frac{1}{31} = 0.\overline{a_1a_2a_3a_4a_5... a_n}$ (that is, $\frac{1}{31}$ can be written as the repeating decimal expansion $0.a_1a_2... a_na_1a_2... a_na_1a_2...$ ), what is the minimum value of $n$?
PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
Ukrainian TYM Qualifying - geometry, 2010.6
Find inside the triangle $ABC$, points $G$ and $H$ for which, respectively, the geometric mean and the harmonic mean of the distances to the sides of the triangle acquire maximum values. In which cases is the segment $GH$ parallel to one of the sides of the triangle? Find the length of such a segment $GH$.
Novosibirsk Oral Geo Oly IX, 2022.2
Faith has four different integer length segments. It turned out that any three of them can form a triangle. What is the smallest total length of this set of segments?
2005 iTest, 5
$$\sin 30^o + \sin 45^o + \sin 60^o + \sin 90^o + \cos 120^o + \cos 135^o + \cos 150^o + \cos 180^o = ?$$
1977 IMO Longlists, 41
A wheel consists of a fixed circular disk and a mobile circular ring. On the disk the numbers $1, 2, 3, \ldots ,N$ are marked, and on the ring $N$ integers $a_1,a_2,\ldots ,a_N$ of sum $1$ are marked. The ring can be turned into $N$ different positions in which the numbers on the disk and on the ring match each other. Multiply every number on the ring with the corresponding number on the disk and form the sum of $N$ products. In this way a sum is obtained for every position of the ring. Prove that the $N$ sums are different.
2020/2021 Tournament of Towns, P4
The $X{}$ pentomino consists of five $1\times1$ squares where four squares are all adjacent to the fifth one. Is it possible to cut nine such pentominoes from an $8\times 8$ chessboard, not necessarily cutting along grid lines? (The picture shows how to cut three such $X{}$ pentominoes.)
[i]Alexandr Gribalko[/i]
2020 AMC 12/AHSME, 16
An urn contains one red ball and one blue ball. A box of extra red and blue balls lie nearby. George performs the following operation four times: he draws a ball from the urn at random and then takes a ball of the same color from the box and returns those two matching balls to the urn. After the four iterations the urn contains six balls. What is the probability that the urn contains three balls of each color?
$\textbf{(A) } \frac16 \qquad \textbf{(B) }\frac15 \qquad \textbf{(C) } \frac14 \qquad \textbf{(D) } \frac13 \qquad \textbf{(E) } \frac12$
2010 Peru IMO TST, 1
Let $ABC$ be an acute-angled triangle and $F$ a point in its interior such that $$ \angle AFB = \angle BFC = \angle CFA = 120^{\circ}.$$ Prove that the Euler lines of the triangles $AFB, BFC$ and $CFA$ are concurrent.
2020 CCA Math Bonanza, I7
Define the binary operation $a\Delta b=ab+a-1$. Compute
\[
10 \Delta(10 \Delta (10 \Delta (10 \Delta (10 \Delta (10 \Delta (10 \Delta (10 \Delta (10 \Delta 10))))))))
\]
where $10$ is written $10$ times.
[i]2020 CCA Math Bonanza Individual Round #7[/i]
1998 Brazil National Olympiad, 1
15 positive integers, all less than 1998(and no one equal to 1), are relatively prime (no pair has a common factor > 1).
Show that at least one of them must be prime.
1977 Czech and Slovak Olympiad III A, 4
Determine all real solutions of the system
\begin{align*}
x+y+z &=3, \\
\frac1x+\frac1y+\frac1z &= \frac{5}{12}, \\
x^3+y^3+z^3 &=45.
\end{align*}
MMPC Part II 1996 - 2019, 2017
[b]p1.[/b] Consider a normal $8 \times 8$ chessboard, where each square is labelled with either $1$ or $-1$. Let $a_k$ be the product of the numbers in the $k$th row, and let $b_k$ be the product of the numbers in the $k$th column. Find, with proof, all possible values of $\sum^8_{k=1}(a_kb_k)$.
[b]p2.[/b] Let $\overline{AB}$ be a line segment with $AB = 1$, and $P$ be a point on $\overline{AB}$ with $AP = x$, for some $0 < x < 1$. Draw circles $C_1$ and $C_2$ with $\overline{AP}$, $\overline{PB}$ as diameters, respectively. Let $\overline{AB_1}$, $\overline{AB_2}$ be tangent to $C_2$ at $B_1$ and $B_2$, and let $\overline{BA_1}$;$\overline{BA_2}$ be tangent to $C_1$ at $A_1$ and $A_2$. Now $C_3$ is a circle tangent to $C_2$, $\overline{AB_1}$, and $\overline{AB_2}$; $C_4$ is a circle tangent to $C_1$, $\overline{BA_1}$, and $\overline{BA_2}$.
(a) Express the radius of $C_3$ as a function of $x$.
(b) Prove that $C_3$ and $C_4$ are congruent.
[img]https://cdn.artofproblemsolving.com/attachments/c/a/fd28ad91ed0a4893608b92f5ccbd01088ae424.png[/img]
[b]p3.[/b] Suppose that the graphs of $y = (x + a)^2$ and $x = (y + a)^2$ are tangent to one another at a point on the line $y = x$. Find all possible values of $a$.
[b]p4.[/b] You may assume without proof or justification that the infinite radical expressions $\sqrt{a-\sqrt{a-\sqrt{a-\sqrt{a-...}}}}$ and $\sqrt{a-\sqrt{a+\sqrt{a-\sqrt{a+...}}}}$ represent unique values for $a > 2$.
(a) Find a real number $a$ such that $$\sqrt{a-\sqrt{a-\sqrt{a-\sqrt{a+...}}}}= 2017$$
(b) Show that
$$\sqrt{2018-\sqrt{2018+\sqrt{2018-\sqrt{2018+...}}}}=\sqrt{2017-\sqrt{2017-\sqrt{2017-\sqrt{2017-...}}}}$$
[b]p5.[/b] (a) Suppose that $m, n$ are positive integers such that $7n^2 - m^2 > 0$. Prove that, in fact, $7n^2 - m^2 \ge 3$.
(b) Suppose that $m, n$ are positive integers such that $\frac{m}{n} <\sqrt7$. Prove that, in fact, $\frac{m}{n}+\frac{1}{mn}
<\sqrt7$.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
1979 IMO Longlists, 63
Let the sequence $\{a_i\}$ of $n$ positive reals denote the lengths of the sides of an arbitrary $n$-gon. Let $s=\sum_{i=1}^{n}{a_i}$. Prove that $2\ge \sum_{i=1}^{n}{\frac{a_i}{s-a_i}}\ge \frac{n}{n-1}$.
PEN O Problems, 50
What's the largest number of elements that a set of positive integers between $1$ and $100$ inclusive can have if it has the property that none of them is divisible by another?
2021 CCA Math Bonanza, L5.4
Estimate the number of primes among the first thousand primes divide some term of the sequence
\[2^0+1,2^1+1,2^2+1,2^3+1,\ldots.\]
An estimate of $E$ earns $2^{1-0.02|A-E|}$ points, where $A$ is the actual answer.
[i]2021 CCA Math Bonanza Lightning Round #5.4[/i]
1987 IMO Longlists, 4
Let $a_1, a_2, a_3, b_1, b_2, b_3$ be positive real numbers. Prove that
\[(a_1b_2 + a_2b_1 + a_1b_3 + a_3b_1 + a_2b_3 + a_3b_2)^2 \geq 4(a_1a_2 + a_2a_3 + a_3a_1)(b_1b_2 + b_2b_3 + b_3b_1)\]
and show that the two sides of the inequality are equal if and only if $\frac{a_1}{b_1} = \frac{a_2}{b_2} = \frac{a_3}{b_3}.$
2021 Taiwan Mathematics Olympiad, 4.
Let $I$ be the incenter of triangle $ABC$ and let $D$ the foot of altitude from $I$ to $BC$. Suppose the reflection point $D’$ of $D$ with respect to $I$ satisfying $\overline{AD’} = \overline{ID’}$. Let $\Gamma$ be the circle centered at $D’$ that passing through $A$ and $I$, and let $X$, $Y\neq A$ be the intersection of $\Gamma$ and $AB$, $AC$, respectively. Suppose $Z$ is a point on $\Gamma$ so that $AZ$ is perpendicular to $BC$.
Prove that $AD$, $D’Z$, $XY$ concurrent at a point.
2022 Junior Balkan Team Selection Tests - Moldova, 9
The circle inscribed in the triangle $ABC$ with center $I$ touches the side $BC$ at the point $D$. The line $DI$ intersects the side $AC$ at the point $M$. The tangent from $M$ to the inscribed circle, different from $AC$, intersects the side $AB$ at the point $N$. The line $NI$ intersects the side $BC$ at the point $P$. Prove that $AB = BP$.
2017 All-Russian Olympiad, 1
$f_1(x)=x^2+p_1x+q_1,f_2(x)=x^2+p_2x+q_2$ are two parabolas. $l_1$ and $l_2$ are two not parallel lines. It is knows, that segments, that cuted on the $l_1$ by parabolas are equals, and segments, that cuted on the $l_2$ by parabolas are equals too. Prove, that parabolas are equals.
2012 Korea - Final Round, 1
Let $ x, y, z $ be positive real numbers. Prove that
\[ \frac{2x^2 + xy}{(y+ \sqrt{zx} + z )^2} + \frac{2y^2 + yz}{(z+ \sqrt{xy} + x )^2} + \frac{2z^2 + zx}{(x+ \sqrt{yz} +y )^2} \ge 1 \]
2018 BMT Spring, Tie 3
Alice and Bob are playing rock paper scissors. Alice however is cheating, so in each round, she has a $\frac35$ chance of winning, $\frac25$ chance of drawing, and $\frac25$ chance of losing. The first person to win $5$ more rounds than the other person wins the match. What is the probability Alice wins?
2018 CMIMC CS, 10
Consider an undirected, connected graph $G$ with vertex set $\{v_1,v_2,\ldots, v_6\}$. Starting at the vertex $v_1$, an ant uses a DFS algorithm to traverse through $G$ under the condition that if there are multiple unvisited neighbors of some vertex, the ant chooses the $v_i$ with smallest $i$. How many possible graphs $G$ are there satisfying the following property: for each $1\leq i\leq 6$, the vertex $v_i$ is the $i^{\text{th}}$ new vertex the ant traverses?
1999 VJIMC, Problem 1
Find the minimal $k$ such that every set of $k$ different lines in $\mathbb R^3$ contains either $3$ mutually parallel lines or $3$ mutually intersecting lines or $3$ mutually skew lines.