Found problems: 85335
2024 Regional Olympiad of Mexico West, 3
In each box of a $9\times 9$ grid we write a positive integer such that, between any $2$ boxes on the same row or column that have the same number $n$ written, there's at least $n$ boxes between them. What is the minimum sum possible for the numbers on the grid?
1961 AMC 12/AHSME, 10
Each side of triangle $ABC$ is $12$ units. $D$ is the foot of the perpendicular dropped from $A$ on $BC$, and $E$ is the midpoint of $AD$. The length of $BE$, in the same unit, is:
${{ \textbf{(A)}\ \sqrt{18} \qquad\textbf{(B)}\ \sqrt{28} \qquad\textbf{(C)}\ 6 \qquad\textbf{(D)}\ \sqrt{63} }\qquad\textbf{(E)}\ \sqrt{98} } $
2014 Danube Mathematical Competition, 2
Let $S$ be a set of positive integers such that $\lfloor \sqrt{x}\rfloor =\lfloor \sqrt{y}\rfloor $ for all $x, y \in S$. Show that the products $xy$, where $x, y \in S$, are pairwise distinct.
2000 National Olympiad First Round, 20
For every real $x$, the polynomial $p(x)$ whose roots are all real satisfies $p(x^2-1)=p(x)p(-x)$. What can the degree of $p(x)$ be at most?
$ \textbf{(A)}\ 0
\qquad\textbf{(B)}\ 2
\qquad\textbf{(C)}\ 4
\qquad\textbf{(D)}\ \text{There is no upper bound for the degree of } p(x)
\qquad\textbf{(E)}\ \text{None}
$
1987 Bundeswettbewerb Mathematik, 3
Prove that for every convex polygon, we can choose three of its consecutive vertices, such that the circle, defined by them, covers the the entire polygon.
(proposed by J. Tabov)
2024 Korea - Final Round, P6
Prove that there exists a positive integer $K$ that satisfies the following condition.
Condition: For any prime $p > K$, the number of positive integers $a \le p$ that $p^2 \mid a^{p-1} - 1$ is less than $\frac{p}{2^{2024}}$
2016 Serbia National Math Olympiad, 1
Let $n>1$ be an integer. Prove that there exist $m>n^n $ such that $\frac {n^m-m^n}{m+n} $ is a positive integer.
2018 USAJMO, 4
Triangle $ABC$ is inscribed in a circle of radius 2 with $\angle ABC \geq 90^\circ$, and $x$ is a real number satisfying the equation $x^4 + ax^3 + bx^2 + cx + 1 = 0$, where $a=BC$, $b=CA$, $c=AB$. Find all possible values of $x$.
1987 USAMO, 3
Construct a set $S$ of polynomials inductively by the rules:
(i) $x\in S$;
(ii) if $f(x)\in S$, then $xf(x)\in S$ and $x+(1-x)f(x)\in S$.
Prove that there are no two distinct polynomials in $S$ whose graphs intersect within the region $\{0 < x < 1\}$.
2022 Pan-American Girls' Math Olympiad, 3
Let $ABC$ be an acute triangle with $AB< AC$. Denote by $P$ and $Q$ points on the segment $BC$ such that $\angle BAP = \angle CAQ < \frac{\angle BAC}{2}$. $B_1$ is a point on segment $AC$. $BB_1$ intersects $AP$ and $AQ$ at $P_1$ and $Q_1$, respectively. The angle bisectors of $\angle BAC$ and $\angle CBB_1$ intersect at $M$. If $PQ_1\perp AC$ and $QP_1\perp AB$, prove that $AQ_1MPB$ is cyclic.
2012 239 Open Mathematical Olympiad, 4
For positive real numbers $a$, $b$, and $c$ with $a+b+c=1$, prove that:
$$ (a-b)^2 + (b-c)^2 + (c-a)^2 \geq \frac{1-27abc}{2}. $$
2023 China Team Selection Test, P11
Let $n\in\mathbb N_+.$ For $1\leq i,j,k\leq n,a_{ijk}\in\{ -1,1\} .$ Prove that: $\exists x_1,x_2,\cdots ,x_n,y_1,y_2,\cdots ,y_n,z_1,z_2,\cdots ,z_n\in \{-1,1\} ,$ satisfy
$$\left| \sum\limits_{i=1}^n\sum\limits_{j=1}^n\sum\limits_{k=1}^na_{ijk}x_iy_jz_k\right| >\frac {n^2}3.$$
[i]Created by Yu Deng[/i]
1991 Turkey Team Selection Test, 2
Show that the equation $a^2+b^2+c^2+d^2=a^2\cdot b^2\cdot c^2\cdot d^2$ has no solution in positive integers.
1989 Tournament Of Towns, (232) 6
A regular hexagon is cut up into $N$ parallelograms of equal area. Prove that $N$ is divisible by three.
(V. Prasolov, I. Sharygin, Moscow)
2006 Belarusian National Olympiad, 2
Find all triples $(x, y,z)$ such that $x, y, z \in (0,1)$ and $$\left(x+\frac{1}{2x}-1\right) \left(y+\frac{1}{2y}-1\right) \left(z+\frac{1}{2z}-1\right) = \left(1-\frac{xy}{z}\right)\left(1-\frac{yz}{x}\right)\left(1-\frac{zx}{y}\right)$$
(D. Bazylev)
2021 CCA Math Bonanza, TB1
Consider the set of all ordered $6$-tuples of nonnegative integers $(a,b,c,d,e,f)$ such that \[a+2b+6c+30d+210e+2310f=2^{15}.\] In the tuple with the property that $a+b+c+d+e+f$ is minimized, what is the value of $c$?
[i]2021 CCA Math Bonanza Tiebreaker Round #1[/i]
2024 Turkey Team Selection Test, 9
In a scalene triangle $ABC,$ $I$ is the incenter and $O$ is the circumcenter. The line $IO$ intersects the lines $BC,CA,AB$ at points $D,E,F$ respectively. Let $A_1$ be the intersection of $BE$ and $CF$. The points $B_1$ and $C_1$ are defined similarly. The incircle of $ABC$ is tangent to sides $BC,CA,AB$ at points $X,Y,Z$ respectively. Let the lines $XA_1, YB_1$ and $ZC_1$ intersect $IO$ at points $A_2,B_2,C_2$ respectively. Prove that the circles with diameters $AA_2,BB_2$ and $CC_2$ have a common point.
2007 Thailand Mathematical Olympiad, 17
Compute the product of positive integers $n$ such that $n^2 + 59n + 881$ is a perfect square.
1984 Polish MO Finals, 1
Find the number of all real functions $f$ which map the sum of $n$ elements into the sum of their images, such that $f^{n-1}$ is a constant function and $f^{n-2}$ is not. Here $f^0(x) = x$ and $f^k = f \circ f^{k-1}$ for $k \ge 1$.
2009 AIME Problems, 1
Before starting to paint, Bill had $ 130$ ounces of blue paint, $ 164$ ounces of red paint, and $ 188$ ounces of white paint. Bill painted four equally sized stripes on a wall, making a blue stripe, a red stripe, a white stripe, and a pink stirpe. Pink is a mixture of red and white, not necessarily in equal amounts. When Bill finished, he had equal amounts of blue, red, and white paint left. Find the total number of ounces of paint Bill had left.
PEN H Problems, 74
Find all pairs $(a,b)$ of positive integers that satisfy the equation \[a^{a^{a}}= b^{b}.\]
2018 IMO Shortlist, C3
Let $n$ be a given positive integer. Sisyphus performs a sequence of turns on a board consisting of $n + 1$ squares in a row, numbered $0$ to $n$ from left to right. Initially, $n$ stones are put into square $0$, and the other squares are empty. At every turn, Sisyphus chooses any nonempty square, say with $k$ stones, takes one of these stones and moves it to the right by at most $k$ squares (the stone should say within the board). Sisyphus' aim is to move all $n$ stones to square $n$.
Prove that Sisyphus cannot reach the aim in less than
\[ \left \lceil \frac{n}{1} \right \rceil + \left \lceil \frac{n}{2} \right \rceil + \left \lceil \frac{n}{3} \right \rceil + \dots + \left \lceil \frac{n}{n} \right \rceil \]
turns. (As usual, $\lceil x \rceil$ stands for the least integer not smaller than $x$. )
2007 Indonesia MO, 2
For every positive integer $ n$, $ b(n)$ denote the number of positive divisors of $ n$ and $ p(n)$ denote the sum of all positive divisors of $ n$. For example, $ b(14)\equal{}4$ and $ p(14)\equal{}24$. Let $ k$ be a positive integer greater than $ 1$.
(a) Prove that there are infinitely many positive integers $ n$ which satisfy $ b(n)\equal{}k^2\minus{}k\plus{}1$.
(b) Prove that there are finitely many positive integers $ n$ which satisfy $ p(n)\equal{}k^2\minus{}k\plus{}1$.
Kharkiv City MO Seniors - geometry, 2018.10.4
On the sides $AB, AC ,BC$ of the triangle $ABC$, the points $M, N, K$ are selected, respectively, such that $AM = AN$ and $BM = BK$. The circle circumscribed around the triangle $MNK$ intersects the segments $AB$ and $BC$ for the second time at points $P$ and $Q$, respectively. Lines $MN$ and $PQ$ intersect at point $T$. Prove that the line $CT$ bisects the segment $MP$.
1940 Moscow Mathematical Olympiad, 061
Given two lines on a plane, find the locus of all points with the difference between the distance to one line and the distance to the other equal to the length of a given segment.