This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2003 China Team Selection Test, 2

Find all functions $f,g$:$R \to R$ such that $f(x+yg(x))=g(x)+xf(y)$ for $x,y \in R$.

2017 NIMO Problems, 5

In triangle $ABC$, $AB=12$, $BC=17$, and $AC=25$. Distinct points $M$ and $N$ lie on the circumcircle of $ABC$ such that $BM=CM$ and $BN=CN$. If $AM + AN = \tfrac{a\sqrt{b}}{c}$, where $a, b, c$ are positive integers such that $\gcd(a, c) = 1$ and $b$ is not divisible by the square of a prime, compute $100a+10b+c$. [i]Proposed by Michael Tang[/i]

2007 Singapore MO Open, 1

Let $x_1,x_2,\ldots,x_n$ be real numbers satisfying $x_1^2+x_2^2+\ldots+x_n^2=1$. Prove that for every integer $k\ge2$ there are integers $a_1,a_2,\ldots,a_n$, not all zero, such that $|a_i|\le k-1$ for all $i$, and $|a_1x_1+a_2x_2+\ldots+a_nx_n|\le{(k-1)\sqrt n\over k^n-1}$.

MathLinks Contest 6th, 3.1

For each positive integer $n$ let $\tau (n)$ be the sum of divisors of $n$. Find all positive integers $k$ for which $\tau (kn - 1) \equiv 0$ (mod $k$) for all positive integers $n$.

1968 IMO Shortlist, 8

Given an oriented line $\Delta$ and a fixed point $A$ on it, consider all trapezoids $ABCD$ one of whose bases $AB$ lies on $\Delta$, in the positive direction. Let $E,F$ be the midpoints of $AB$ and $CD$ respectively. Find the loci of vertices $B,C,D$ of trapezoids that satisfy the following: [i](i) [/i] $|AB| \leq a$ ($a$ fixed); [i](ii) [/i] $|EF| = l$ ($l$ fixed); [i](iii)[/i] the sum of squares of the nonparallel sides of the trapezoid is constant. [hide="Remark"] [b]Remark.[/b] The constants are chosen so that such trapezoids exist.[/hide]

2014 Moldova Team Selection Test, 2

Tags: inequalities
Let $a,b,c$ be positive real numbers such that $abc=1$. Determine the minimum value of $E(a,b,c) = \sum \dfrac{a^3+5}{a^3(b+c)}$ .

2016 IOM, 5

Tags: algebra
Let $r(x)$ be a polynomial of odd degree with real coefficients. Prove that there exist only finitely many (or none at all) pairs of polynomials $p(x) $ and $q(x)$ with real coefficients satisfying the equation $(p(x))^3 + q(x^2) = r(x)$.

2017 Stars of Mathematics, 1

How many natural numbers smaller than $ 2017 $ can be uniquely (order of summands are not relevant) written as a sum of three powers of $ 2? $ [i]Andrei Eckstein[/i]

2023 Malaysian IMO Team Selection Test, 1

Let $P$ be a cyclic polygon with circumcenter $O$ that does not lie on any diagonal, and let $S$ be the set of points on 2D plane containing $P$ and $O$. The $\textit{Matcha Sweep Game}$ is a game between two players $A$ and $B$, with $A$ going first, such that each choosing a nonempty subset $T$ of points in $S$ that has not been previously chosen, and such that if $T$ has at least $3$ vertices then $T$ forms a convex polygon. The game ends with all points have been chosen, with the player picking the last point wins. For which polygons $P$ can $A$ guarantee a win? [i]Proposed by Anzo Teh Zhao Yang[/i]

2025 Caucasus Mathematical Olympiad, 4

Tags: algebra
Determine if there exist non-constant polynomials $P(x)$, $Q(x)$ and $R(x)$ with real coefficients and leading coefficient $1$, such that each of the polynomials \[ P(Q(x)), \quad Q(R(x)), \quad R(P(x)) \] has at least one real root, while each of the polynomials \[ Q(P(x)), \quad R(Q(x)), \quad P(R(x)) \] has no real roots.

2022 VIASM Summer Challenge, Problem 4

Tags: geometry
Given a triangle $ABC$ inscribed in $(O)$. Choose points $M,N,P$ on the sides $AB,BC,CA$ such that $AMNP$ is a parallelogram. The segment $CM$ intersects $NP$ at $E$; the segment $BP$ intersects $NM$ at $F$; and the segment $BE$ intersects $CF$ at $D.$ a) Prove that: $A,D,N$ are collinear. b) Let $I,J$ be the circumcenters of $\triangle MBF, \triangle PCE,$ respectively. Prove that: $OD$ passes through the midpoint of $IJ.$

2006 All-Russian Olympiad, 7

A $100\times 100$ chessboard is cut into dominoes ($1\times 2$ rectangles). Two persons play the following game: At each turn, a player glues together two adjacent cells (which were formerly separated by a cut-edge). A player loses if, after his turn, the $100\times 100$ chessboard becomes connected, i. e. between any two cells there exists a way which doesn't intersect any cut-edge. Which player has a winning strategy - the starting player or his opponent?

2023 Sharygin Geometry Olympiad, 16

Let $AH_A$ and $BH_B$ be the altitudes of a triangle $ABC$. The line $H_AH_B$ meets the circumcircle of $ABC$ at points $P$ and $Q$. Let $A'$ be the reflection of $A$ about $BC$, and $B'$ be the reflection of $B$ about $CA$. Prove that $A',B', P,Q$ are concyclic.

2013 NZMOC Camp Selection Problems, 5

Consider functions $f$ from the whole numbers (non-negative integers) to the whole numbers that have the following properties: $\bullet$ For all $x$ and $y$, $f(xy) = f(x)f(y)$, $\bullet$ $f(30) = 1$, and $\bullet$ for any $n$ whose last digit is $7$, $f(n) = 1$. Obviously, the function whose value at $n$ is $ 1$ for all $n$ is one such function. Are there any others? If not, why not, and if so, what are they?

2014 Dutch Mathematical Olympiad, 5

We consider the ways to divide a $1$ by $1$ square into rectangles (of which the sides are parallel to those of the square). All rectangles must have the same circumference, but not necessarily the same shape. a) Is it possible to divide the square into 20 rectangles, each having a circumference of $2:5$? b) Is it possible to divide the square into 30 rectangles, each having a circumference of $2$?

2022 Regional Competition For Advanced Students, 1

Let $a$ and $b$ be positive real numbers with $a^2 + b^2 =\frac12$. Prove that $$\frac{1}{1 - a}+\frac{1}{1-b}\ge 4.$$ When does equality hold? [i](Walther Janous)[/i]

Kyiv City MO Juniors 2003+ geometry, 2011.8.41

The medians $AL, BM$, and $CN$ are drawn in the triangle $ABC$. Prove that $\angle ANC = \angle ALB$ if and only if $\angle ABM =\angle LAC$. (Veklich Bogdan)

2021 AMC 10 Fall, 23

Tags:
Each of the $5{ }$ sides and the $5{ }$ diagonals of a regular pentagon are randomly and independently colored red or blue with equal probability. What is the probability that there will be a triangle whose vertices are among the vertices of the pentagon such that all of its sides have the same color? $(\textbf{A})\: \frac23\qquad(\textbf{B}) \: \frac{105}{128}\qquad(\textbf{C}) \: \frac{125}{128}\qquad(\textbf{D}) \: \frac{253}{256}\qquad(\textbf{E}) \: 1$

1998 Tournament Of Towns, 6

A gang of robbers took away a bag of coins from a merchant . Each coin is worth an integer number of pennies. It is known that if any single coin is removed from the bag, then the remaining coins can be divided fairly among the robbers (that is, they all get coins with the same total value in pennies) . Prove that after one coin is removed, the number of the remaining coins is divisible by the number of robbers. (Folklore, modified by A Shapovalov)

2012 Dutch IMO TST, 2

There are two boxes containing balls. One of them contains $m$ balls, and the other contains $n$ balls, where $m, n > 0$. Two actions are permitted: (i) Remove an equal number of balls from both boxes. (ii) Increase the number of balls in one of the boxes by a factor $k$. Is it possible to remove all of the balls from both boxes with just these two actions, 1. if $k = 2$? 2. if $k = 3$?

2023 Belarus - Iran Friendly Competition, 1

Find all positive integers n such that the product $1! \cdot 2! \cdot \cdot \cdot \cdot n!$ is a perfect square

2018 AIME Problems, 1

Tags:
Let $S$ be the number of ordered pairs of integers $(a,b)$ with $1 \leq a \leq 100$ and $b \geq 0$ such that the polynomial $x^2+ax+b$ can be factored into the product of two (not necessarily distinct) linear factors with integer coefficients. Find the remainder when $S$ is divided by $1000$.

2007 India National Olympiad, 5

Let $ ABC$ be a triangle in which $ AB\equal{}AC$. Let $ D$ be the midpoint of $ BC$ and $ P$ be a point on $ AD$. Suppose $ E$ is the foot of perpendicular from $ P$ on $ AC$. Define \[ \frac{AP}{PD}\equal{}\frac{BP}{PE}\equal{}\lambda , \ \ \ \frac{BD}{AD}\equal{}m , \ \ \ z\equal{}m^2(1\plus{}\lambda)\] Prove that \[ z^2 \minus{} (\lambda^3 \minus{} \lambda^2 \minus{} 2)z \plus{} 1 \equal{} 0\] Hence show that $ \lambda \ge 2$ and $ \lambda \equal{} 2$ if and only if $ ABC$ is equilateral.

1989 China National Olympiad, 1

We are given two point sets $A$ and $B$ which are both composed of finite disjoint arcs on the unit circle. Moreover, the length of each arc in $B$ is equal to $\dfrac{\pi}{m}$ ($m \in \mathbb{N}$). We denote by $A^j$ the set obtained by a counterclockwise rotation of $A$ about the center of the unit circle for $\dfrac{j\pi}{m}$ ($j=1,2,3,\dots$). Show that there exists a natural number $k$ such that $l(A^k\cap B)\ge \dfrac{1}{2\pi}l(A)l(B)$.(Here $l(X)$ denotes the sum of lengths of all disjoint arcs in the point set $X$)

2002 India IMO Training Camp, 21

Given a prime $p$, show that there exists a positive integer $n$ such that the decimal representation of $p^n$ has a block of $2002$ consecutive zeros.