This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2002 China Girls Math Olympiad, 1

Tags:
Find all positive integers $ n$ such $ 20n\plus{}2$ can divide $ 2003n \plus{} 2002.$

2019 Hanoi Open Mathematics Competitions, 8

Let $ABC$ be a triangle, and $M$ be the midpoint of $BC$, Let $N$ be the point on the segment $AM$ with $AN = 3NM$, and $P$ be the intersection point of the lines $BN$ and $AC$. What is the area in cm$^2$ of the triangle $ANP$ if the area of the triangle $ABC$ is $40$ cm$^2$?

2003 All-Russian Olympiad, 4

Find the greatest natural number $N$ such that, for any arrangement of the numbers $1, 2, \ldots, 400$ in a chessboard $20 \times 20$, there exist two numbers in the same row or column, which differ by at least $N.$

2008 China Team Selection Test, 2

Let $ n > 1$ be an integer, and $ n$ can divide $ 2^{\phi(n)} \plus{} 3^{\phi(n)} \plus{} \cdots \plus{} n^{\phi(n)},$ let $ p_{1},p_{2},\cdots,p_{k}$ be all distinct prime divisors of $ n$. Show that $ \frac {1}{p_{1}} \plus{} \frac {1}{p_{2}} \plus{} \cdots \plus{} \frac {1}{p_{k}} \plus{} \frac {1}{p_{1}p_{2}\cdots p_{k}}$ is an integer. ( where $ \phi(n)$ is defined as the number of positive integers $ \leq n$ that are relatively prime to $ n$.)

2012 Regional Olympiad of Mexico Center Zone, 3

In the parallelogram $ABCD$, $\angle BAD =60 ^ \circ$. Let $E $ be the intersection point of the diagonals. The circle circumscribed to the triangle $ACD$ intersects the line $AB$ at the point $K$ (different from $A$), the line $BD$ at the point $P$ (different from $D$), and to the line $BC$ in $L$ (different from $C$). The line $EP$ intersects the circumscribed circle of the triangle $CEL$ at the points $E$ and $M$. Show that the triangles $KLM$ and $CAP$ are congruent.

2010 CHMMC Fall, 1

Tags: geometry
In the diagram below, all circles are tangent to each other as shown. The six outer circles are all congruent to each other, and the six inner circles are all congruent to each other. Compute the ratio of the area of one of the outer circles to the area of one of the inner circles. [img]https://cdn.artofproblemsolving.com/attachments/b/6/4cfbc1df86b8d38e082b7ad0a71b9e366548b3.png[/img]

2020 MIG, 9

Tags:
Lily has an unfair coin that has $\tfrac23$ probability of showing heads and $\tfrac13$ probability of showing tails. She flips the coin twice. What is the probability that the first flip is heads while the second is tails? $\textbf{(A) }0\qquad\textbf{(B) }1/9\qquad\textbf{(C) }2/9\qquad\textbf{(D) }4/9\qquad\textbf{(E) }1$

2023 Brazil Team Selection Test, 2

Find all integers $n$ satisfying $n \geq 2$ and $\dfrac{\sigma(n)}{p(n)-1} = n$, in which $\sigma(n)$ denotes the sum of all positive divisors of $n$, and $p(n)$ denotes the largest prime divisor of $n$.

2012 USAMTS Problems, 2

Palmer and James work at a dice factory, placing dots on dice. Palmer builds his dice correctly, placing the dots so that $1$, $2$, $3$, $4$, $5$, and $6$ dots are on separate faces. In a fit of mischief, James places his $21$ dots on a die in a peculiar order, putting some nonnegative integer number of dots on each face, but not necessarily in the correct con figuration. Regardless of the confi guration of dots, both dice are unweighted and have equal probability of showing each face after being rolled. Then Palmer and James play a game. Palmer rolls one of his normal dice and James rolls his peculiar die. If they tie, they roll again. Otherwise the person with the larger roll is the winner. What is the maximum probability that James wins? Give one example of a peculiar die that attains this maximum probability.

2013 Purple Comet Problems, 6

Tags:
In four years Kay will be twice as old as Gordon. Four years after that Shaun will be twice as old as Kay. Four years after that Shaun will be three times as old as Gordon. How many years old is Shaun now?

2009 Abels Math Contest (Norwegian MO) Final, 1b

Show that the sum of three consecutive perfect cubes can always be written as the difference between two perfect squares.

2016 LMT, 15

Tags:
A round robin tournament is held with $2016$ participants. Each player plays each other player once and exactly one game results in a tie. Let $W$ be the sum of the squares of each team's win total and let $L$ be the sum of the squares of each team's loss total. Find the maximum possible value of $W-L$. [i]Proposed by Matthew Weiss

1993 Greece National Olympiad, 12

The vertices of $\triangle ABC$ are $A = (0,0)$, $B = (0,420)$, and $C = (560,0)$. The six faces of a die are labeled with two $A$'s, two $B$'s, and two $C$'s. Point $P_1 = (k,m)$ is chosen in the interior of $\triangle ABC$, and points $P_2$, $P_3$, $P_4, \dots$ are generated by rolling the die repeatedly and applying the rule: If the die shows label $L$, where $L \in \{A, B, C\}$, and $P_n$ is the most recently obtained point, then $P_{n + 1}$ is the midpoint of $\overline{P_n L}$. Given that $P_7 = (14,92)$, what is $k + m$?

2001 Turkey MO (2nd round), 1

Let $ABCD$ be a convex quadrilateral. The perpendicular bisectors of the sides $[AD]$ and $[BC]$ intersect at a point $P$ inside the quadrilateral and the perpendicular bisectors of the sides $[AB]$ and $[CD]$ also intersect at a point $Q$ inside the quadrilateral. Show that, if $\angle APD = \angle BPC$ then $\angle AQB = \angle CQD$

2017 F = ma, 19

Tags: fraction
19) A puck is kicked up a ramp, which makes an angle of $30^{\circ}$ with the horizontal. The graph below depicts the speed of the puck versus time. What is the coefficient of friction between the puck and the ramp? A) 0.07 B) 0.15 C) 0.22 D) 0.29 E) 0.37

2005 Purple Comet Problems, 8

The number $1$ is special. The number $2$ is special because it is relatively prime to $1$. The number $3$ is not special because it is not relatively prime to the sum of the special numbers less than it, $1 + 2$. The number $4$ is special because it is relatively prime to the sum of the special numbers less than it. So, a number bigger than $1$ is special only if it is relatively prime to the sum of the special numbers less than it. Find the twentieth special number.

1992 IMO Longlists, 3

Let $ABC$ be a triangle, $O$ its circumcenter, $S$ its centroid, and $H$ its orthocenter. Denote by $A_1, B_1$, and $C_1$ the centers of the circles circumscribed about the triangles $CHB, CHA$, and $AHB$, respectively. Prove that the triangle $ABC$ is congruent to the triangle $A_1B_1C_1$ and that the nine-point circle of $\triangle ABC$ is also the nine-point circle of $\triangle A_1B_1C_1$.

2023 China Western Mathematical Olympiad, 5

Let $a_1,a_2,\cdots,a_{100}\geq 0$ such that $\max\{a_{i-1}+a_i,a_i+a_{i+1}\}\geq i $ for any $2\leq i\leq 99.$ Find the minimum of $a_1+a_2+\cdots+a_{100}.$

2019 HMNT, 6

Find all ordered pairs $(a,b)$ of positive integers such that $2a + 1$ divides $3b - 1$ and $2b + 1$ divides $3a -1$.

2021 Caucasus Mathematical Olympiad, 7

4 tokens are placed in the plane. If the tokens are now at the vertices of a convex quadrilateral $P$, then the following move could be performed: choose one of the tokens and shift it in the direction perpendicular to the diagonal of $P$ not containing this token; while shifting tokens it is prohibited to get three collinear tokens. Suppose that initially tokens were at the vertices of a rectangle $\Pi$, and after a number of moves tokens were at the vertices of one another rectangle $\Pi'$ such that $\Pi'$ is similar to $\Pi$ but not equal to $\Pi $. Prove that $\Pi$ is a square.

2009 Princeton University Math Competition, 2

Let $(x_n)$ be a sequence of positive integers defined as follows: $x_1$ is a fixed six-digit number and for any $n \geq 1$, $x_{n+1}$ is a prime divisor of $x_n + 1$. Find $x_{19} + x_{20}$.

1994 Polish MO Finals, 2

A parallelopiped has vertices $A_1, A_2, ... , A_8$ and center $O$. Show that: \[ 4 \sum_{i=1}^8 OA_i ^2 \leq \left(\sum_{i=1}^8 OA_i \right) ^2 \]

2013 ELMO Shortlist, 13

In $\triangle ABC$, $AB<AC$. $D$ and $P$ are the feet of the internal and external angle bisectors of $\angle BAC$, respectively. $M$ is the midpoint of segment $BC$, and $\omega$ is the circumcircle of $\triangle APD$. Suppose $Q$ is on the minor arc $AD$ of $\omega$ such that $MQ$ is tangent to $\omega$. $QB$ meets $\omega$ again at $R$, and the line through $R$ perpendicular to $BC$ meets $PQ$ at $S$. Prove $SD$ is tangent to the circumcircle of $\triangle QDM$. [i]Proposed by Ray Li[/i]

2016 CMIMC, 4

Tags: algebra
A line with negative slope passing through the point $(18,8)$ intersects the $x$ and $y$ axes at $(a,0)$ and $(0,b)$, respectively. What is the smallest possible value of $a+b$?

2016 CMIMC, 3

How many pairs of integers $(a,b)$ are there such that $0\leq a < b \leq 100$ and such that $\tfrac{2^b-2^a}{2016}$ is an integer?