This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2001 AMC 10, 22

Tags:
In the magic square shown, the sums of the numbers in each row, column, and diagonal are the same. Five of these numbers are represented by $ v$, $ w$, $ x$, $ y$, and $ z$. Find $ y \plus{} z$. $ \textbf{(A)}\ 43 \qquad \textbf{(B)}\ 44 \qquad \textbf{(C)}\ 45 \qquad \textbf{(D)}\ 46 \qquad \textbf{(E)}\ 47$ [asy]unitsize(10mm); defaultpen(linewidth(1pt)); for(int i=0; i<=3; ++i) { draw((0,i)--(3,i)); draw((i,0)--(i,3)); } label("$25$",(0.5,0.5)); label("$z$",(1.5,0.5)); label("$21$",(2.5,0.5)); label("$18$",(0.5,1.5)); label("$x$",(1.5,1.5)); label("$y$",(2.5,1.5)); label("$v$",(0.5,2.5)); label("$24$",(1.5,2.5)); label("$w$",(2.5,2.5));[/asy]

2016 KOSOVO TST, 5

Let ABC be an acute triangle such that $|AB|=|AC|$ . Let D be a point on AB such that $<ACD = <CBD$. Let E be midpoint of BD and S be circumcenter of BCD. Prove that A,E,S,C are cyclic

1975 Miklós Schweitzer, 10

Prove that an idempotent linear operator of a Hilbert space is self-adjoint if and only if it has norm $ 0$ or $ 1$. [i]J. Szucs[/i]

1998 National High School Mathematics League, 6

In the 27 points of a cube: 8 vertexes, 12 midpoints of edges, 6 centers of surfaces, and the center of the cube, the number of groups of three collinear points is $\text{(A)}57\qquad\text{(B)}49\qquad\text{(C)}43\qquad\text{(D)}37$

2023 JBMO Shortlist, A6

Tags: algebra
Find the maximum constant $C$ such that, whenever $\{a_n \}_{n=1}^{\infty}$ is a sequence of positive real numbers satisfying $a_{n+1}-a_n=a_n(a_n+1)(a_n+2)$, we have $$\frac{a_{2023}-a_{2020}}{a_{2022}-a_{2021}}>C.$$

1974 AMC 12/AHSME, 17

Tags:
If $i^2=-1$, then $(1+i)^{20}-(1-i)^{20}$ equals $ \textbf{(A)}\ -1024 \qquad\textbf{(B)}\ -1024i \qquad\textbf{(C)}\ 0 \qquad\textbf{(D)}\ 1024 \qquad\textbf{(E)}\ 1024i $

2007 Germany Team Selection Test, 1

We define a sequence $ \left(a_{1},a_{2},a_{3},\ldots \right)$ by \[ a_{n} \equal{} \frac {1}{n}\left(\left\lfloor\frac {n}{1}\right\rfloor \plus{} \left\lfloor\frac {n}{2}\right\rfloor \plus{} \cdots \plus{} \left\lfloor\frac {n}{n}\right\rfloor\right), \] where $\lfloor x\rfloor$ denotes the integer part of $x$. [b]a)[/b] Prove that $a_{n+1}>a_n$ infinitely often. [b]b)[/b] Prove that $a_{n+1}<a_n$ infinitely often. [i]Proposed by Johan Meyer, South Africa[/i]

2022 All-Russian Olympiad, 5

Tags: algebra
There are $11$ integers (not necessarily distinct) written on the board. Can it turn out that the product of any five of them is greater than the product of the other six?

2022 Germany Team Selection Test, 1

Tags: algebra
Let $n$ be a positive integer. Given is a subset $A$ of $\{0,1,...,5^n\}$ with $4n+2$ elements. Prove that there exist three elements $a<b<c$ from $A$ such that $c+2a>3b$. [i]Proposed by Dominik Burek and Tomasz Ciesla, Poland[/i]

2023 Durer Math Competition Finals, 1

$ABC$ is an isosceles triangle. The base $BC$ is $1$ cm long, and legs $AB$ and $AC$ are $2$ cm long. Let the midpoint of $AB$ be $F$, and the midpoint of $AC$ be $G$. Additionally, $k$ is a circle, that is tangent to $AB$ and A$C$, and it’s points of tangency are $F$ and $G$ accordingly. Prove, that the intersection of $CF$ and $BG$ falls on the circle $k$.

2019 AMC 10, 7

Tags:
Each piece of candy in a store costs a whole number of cents. Casper has exactly enough money to buy either 12 pieces of red candy, 14 pieces of green candy, 15 pieces of blue candy, or $n$ pieces of purple candy. A piece of purple candy costs 20 cents. What is the smallest possible value of $n$? $\textbf{(A) } 18 \qquad \textbf{(B) } 21 \qquad \textbf{(C) } 24\qquad \textbf{(D) } 25 \qquad \textbf{(E) } 28$

2004 Silk Road, 1

Tags: algebra
Find all $ f: \mathbb{R} \to \mathbb{R}$, such that $(x+y)(f(x)-f(y))=(x-y)f(x+y)$ for all real $x,y$.

2024 Bangladesh Mathematical Olympiad, P8

A set consisting of $n$ points of a plane is called a [i]bosonti $n$-point[/i] if any three of its points are located in vertices of an isosceles triangle. Find all positive integers $n$ for which there exists a bosonti $n$-point.

1968 All Soviet Union Mathematical Olympiad, 103

Tags: decagon , geometry
Given a triangle $ABC$, point $D$ on $[AB], E$ on $[AC]$, $|AD| = |DE| = |AC| , |BD| = |AE| , DE$ is parallel to $BC$. Prove that the length $|BD|$ equals to the side of a regular decagon inscribed in a circle with the radius $R=|AC|$.

2013 Middle European Mathematical Olympiad, 8

The expression \[ \pm \Box \pm \Box \pm \Box \pm \Box \pm \Box \pm \Box \] is written on the blackboard. Two players, $ A $ and $ B $, play a game, taking turns. Player $ A $ takes the first turn. In each turn, the player on turn replaces a symbol $ \Box $ by a positive integer. After all the symbols $\Box$ are replace, player $A$ replaces each of the signs $\pm$ by either + or -, independently of each other. Player $ A $ wins if the value of the expression on the blackboard is not divisible by any of the numbers $ 11, 12, \cdots, 18 $. Otherwise, player $ B$ wins. Determine which player has a winning strategy.

2017 May Olympiad, 1

Tags: digit , odd , number theory
To each three-digit number, Matías added the number obtained by inverting its digits. For example, he added $729$ to the number $927$. Calculate in how many cases the result of the sum of Matías is a number with all its digits odd.

1992 India National Olympiad, 8

Tags:
Determine all pairs $(m,n)$ of positive integers for which $2^{m} + 3^{n}$ is a perfect square.

Brazil L2 Finals (OBM) - geometry, 2005.2

In the right triangle $ABC$, the perpendicular sides $AB$ and $BC$ have lengths $3$ cm and $4$ cm, respectively. Let $M$ be the midpoint of the side $AC$ and let $D$ be a point, distinct from $A$, such that $BM = MD$ and $AB = BD$. a) Prove that $BM$ is perpendicular to $AD$. b) Calculate the area of the quadrilateral $ABDC$.

1967 Miklós Schweitzer, 6

Let $ A$ be a family of proper closed subspaces of the Hilbert space $ H\equal{}l^2$ totally ordered with respect to inclusion (that is , if $ L_1,L_2 \in A$, then either $ L_1\subset L_2$ or $ L_2\subset L_1$). Prove that there exists a vector $ x \in H$ not contaied in any of the subspaces $ L$ belonging to $ A$. [i]B. Szokefalvi Nagy[/i]

Maryland University HSMC part II, 2002

[b]p1.[/b] One chilly morning, $10$ penguins ate a total of $50$ fish. No fish was shared by two or more penguins. Assuming that each penguin ate at least one fish, prove that at least two penguins ate the same number of fish. [b]p2.[/b] A triangle of area $1$ has sides of lengths $a > b > c$. Prove that $b > 2^{1/2}$. [b]p3.[/b] Imagine ducks as points in a plane. Three ducks are said to be in a row if a straight line passes through all three ducks. Three ducks, Huey, Dewey, and Louie, each waddle along a different straight line in the plane, each at his own constant speed. Although their paths may cross, the ducks never bump into each other. Prove: If at three separate times the ducks are in a row, then they are always in a row. [b]p4.[/b] Two computers and a number of humans participated in a large round-robin chess tournament (i.e., every participant played every other participant exactly once). In every game, the winner of the game received one point, the loser zero. If a game ended in a draw, each player received half a point. At the end of the tournament, the sum of the two computers' scores was $38$ points, and all of the human participants finished with the same total score. Describe (with proof) ALL POSSIBLE numbers of humans that could have participated in such a tournament. [b]p5.[/b] One thousand cows labeled $000$, $001$,$...$, $998$, $999$ are requested to enter $100$ empty barns labeled $00$, $01$,$...$,$98$, $99$. One hundred Dalmatians - one at the door of each barn - enforce the following rule: In order for a cow to enter a barn, the label of the barn must be obtainable from the label of the cow by deleting one of the digits. For example, the cow labeled $357$ would be admitted into any of the barns labeled $35$, $37$ or $57$, but would not admitted into any other barns. a) Demonstrate that there is a way for all $1000$ cows to enter the barns so that at least $50$ of the barns remain empty. b) Prove that no matter how they distribute themselves, after all $1000$ cows enter the barns, at most $50$ of the barns will remain empty. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2018 Poland - Second Round, 3

Bisector of side $BC$ intersects circumcircle of triangle $ABC$ in points $P$ and $Q$. Points $A$ and $P$ lie on the same side of line $BC$. Point $R$ is an orthogonal projection of point $P$ on line $AC$. Point $S$ is middle of line segment $AQ$. Show that points $A, B, R, S$ lie on one circle.

2000 Harvard-MIT Mathematics Tournament, 25

Tags:
Find the next number in the sequence $131, 111311, 311321, 1321131211,\cdots$

2023 BMT, 8

Tags: algebra
Compute the smallest real $t$ such that there exist constants $a$, $b$ for which the roots of $x^3-ax^2+bx - \frac{ab}{t}$ are the side lengths of a right triangle

1972 IMO Shortlist, 6

Show that for any $n \not \equiv 0 \pmod{10}$ there exists a multiple of $n$ not containing the digit $0$ in its decimal expansion.

2023 Polish Junior Math Olympiad First Round, 6.

We call the figure shown in the picture consisting of five unit squares a $\emph{plus}$, and each rectangle consisting of two such squares a $\emph{minus}$. Does there exist an odd integer $n$ with the property that a square with side length $n$ can be dissected into pluses and minuses? Justify your answer. [img] https://wiki-images.artofproblemsolving.com//6/6a/18-1-6.png [/img]