This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2022 Olympic Revenge, Problem 2

Let $ABC$ be a triangle and $\Omega$ its circumcircle. Let the internal angle bisectors of $\angle BAC, \angle ABC, \angle BCA$ intersect $BC,CA,AB$ on $D,E,F$, respectively. The perpedincular line to $EF$ through $D$ intersects $EF$ on $X$ and $AD$ intersects $EF$ on $Z$. The circle internally tangent to $\Omega$ and tangent to $AB,AC$ touches $\Omega$ on $Y$. Prove that $(XYZ)$ is tangent to $\Omega$.

2018 AIME Problems, 9

Find the number of four-element subsets of $\{1,2,3,4,\dots, 20\}$ with the property that two distinct elements of a subset have a sum of $16$, and two distinct elements of a subset have a sum of $24$. For example, $\{3,5,13,19\}$ and $\{6,10,20,18\}$ are two such subsets.

2002 AMC 10, 8

Tags:
How many ordered triples of positive integers $(x,y,z)$ satisfy $(x^y)^z=64$? $\textbf{(A) }5\qquad\textbf{(B) }6\qquad\textbf{(C) }7\qquad\textbf{(D) }8\qquad\textbf{(E) }9$

1986 Tournament Of Towns, (118) 6

Given the nonincreasing sequence of non-negative numbers in which $a_1 \ge a_2 \ge a_3 \ge ... \ge a_{2n-1}\ge 0$. Prove that $a^2_1 -a^2_2 + a^2_3 - ... + a^2_{2n- l} \ge (a_1 - a_2 + a_3 - ... + a_{2n- l} )^2$ . ( L . Kurlyandchik , Leningrad )

2002 IMO Shortlist, 1

Let $n$ be a positive integer. Each point $(x,y)$ in the plane, where $x$ and $y$ are non-negative integers with $x+y<n$, is coloured red or blue, subject to the following condition: if a point $(x,y)$ is red, then so are all points $(x',y')$ with $x'\leq x$ and $y'\leq y$. Let $A$ be the number of ways to choose $n$ blue points with distinct $x$-coordinates, and let $B$ be the number of ways to choose $n$ blue points with distinct $y$-coordinates. Prove that $A=B$.

2020 AMC 12/AHSME, 11

Tags: probability
A frog sitting at the point $(1, 2)$ begins a sequence of jumps, where each jump is parallel to one of the coordinate axes and has length $1$, and the direction of each jump (up, down, right, or left) is chosen independently at random. The sequence ends when the frog reaches a side of the square with vertices $(0,0), (0,4), (4,4),$ and $(4,0)$. What is the probability that the sequence of jumps ends on a vertical side of the square$?$ $\textbf{(A) } \frac{1}{2} \qquad \textbf{(B) } \frac{5}{8} \qquad \textbf{(C) } \frac{2}{3} \qquad \textbf{(D) } \frac{3}{4} \qquad \textbf{(E) } \frac{7}{8}$

2020-2021 Winter SDPC, #3

Let $ABCD$ be a quadrilateral, let $P$ be the intersection of $AB$ and $CD$, and let $O$ be the intersection of the perpendicular bisectors of $AB$ and $CD$. Suppose that $O$ does not lie on line $AB$ and $O$ does not lie on line $CD$. Let $B'$ and $D'$ be the reflections of $B$ and $D$ across $OP$. Show that if $AB'$ and $CD'$ meet on $OP$, then $ABCD$ is cyclic.

2010 Dutch IMO TST, 1

Let $ABC$ be an acute triangle such that $\angle BAC = 45^o$. Let $D$ a point on $AB$ such that $CD \perp AB$. Let $P$ be an internal point of the segment $CD$. Prove that $AP\perp BC$ if and only if $|AP| = |BC|$.

2008 CHKMO, 3

In a school there are $2007$ male and $2007$ female students. Each student joins not more than $100$ clubs in the school. It is known that any two students of opposite genders have joined at least one common club. Show that there is a club with at least $11$ male and $11$ female members.

1988 IMO Longlists, 87

Tags: algebra
In a row written in increasing order all the irreducible positive rational numbers, such that the product of the numerator and the denominator is less than 1988. Prove that any two adjacent fractions $\frac{a}{b}$ and $\frac{c}{d},$ $\frac{a}{b} < \frac{c}{d},$ satisfy the equation $b \cdot c - a \cdot d = 1.$

1987 USAMO, 2

Tags: geometry
$AD$, $BE$, and $CF$ are the bisectors of the interior angles of triangle $ABC$, with $D$, $E$, and $F$ lying on the perimeter. If angle $EDF$ is $90$ degrees, determine all possible values of angle $BAC$.

1998 Harvard-MIT Mathematics Tournament, 3

Find the area of the region bounded by the graphs $y=x^2$, $y=x$, and $x=2$.

2019 Nordic, 2

Let $a, b, c $ be the side lengths of a right angled triangle with c > a, b. Show that $$3<\frac{c^3-a^3-b^3}{c(c-a)(c-b)}\leq \sqrt{2}+2.$$

2024 Czech-Polish-Slovak Junior Match, 5

Is there a positive integer $n$ such that when we write the decimal digits of $2^n$ in opposite order, we get another integer power of $2$?

2013 Hanoi Open Mathematics Competitions, 4

Let $x_0 = [a], x_1 = [2a] - [a], x_2 = [3a] - [2a], x_3 = [3a] - [4a],x_4 = [5a] - [4a],x_5 = [6a] - [5a], . . . , $ where $a=\frac{\sqrt{2013}}{\sqrt{2014}}$ .The value of $x_9$ is: (A): $2$ (B): $3$ (C): $4$ (D): $5$ (E): None of the above.

2007 Baltic Way, 18

Let $a,b,c,d$ be non-zero integers, such that the only quadruple of integers $(x, y, z, t)$ satisfying the equation \[ax^2+by^2+cz^2+dt^2=0\] is $x=y=z=t=0$. Does it follow that the numbers $a,b,c,d$ have the same sign?

2023 New Zealand MO, 6

Tags: geometry
Let triangle $ABC$ be right-angled at $A$. Let $D$ be the point on $AC$ such that $BD$ bisects angle $\angle ABC$. Prove that $BC - BD = 2AB$ if and only if $\frac{1}{BD} - \frac{1}{BC} =\frac{1}{2AB}$.

1991 All Soviet Union Mathematical Olympiad, 543

Show that $\frac{(x + y + z)^2}{3} \ge x\sqrt{yz} + y\sqrt{zx} + z\sqrt{xy}$ for all non-negative reals $x, y, z$.

2007 Today's Calculation Of Integral, 207

Evaluate the following definite integral. \[\int_{e^{e}}^{e^{e+1}}\left\{\frac{1}{\ln x \cdot\ln (\ln x)}+\ln (\ln (\ln x))\right\}dx\]

2014 Purple Comet Problems, 3

The cross below is made up of five congruent squares. The perimeter of the cross is $72$. Find its area. [asy] import graph; size(3cm); pair A = (0,0); pair temp = (1,0); pair B = rotate(45,A)*temp; pair C = rotate(90,B)*A; pair D = rotate(270,C)*B; pair E = rotate(270,D)*C; pair F = rotate(90,E)*D; pair G = rotate(270,F)*E; pair H = rotate(270,G)*F; pair I = rotate(90,H)*G; pair J = rotate(270,I)*H; pair K = rotate(270,J)*I; pair L = rotate(90,K)*J; draw(A--B--C--D--E--F--G--H--I--J--K--L--cycle); [/asy]

2011 IMO Shortlist, 2

Determine all sequences $(x_1,x_2,\ldots,x_{2011})$ of positive integers, such that for every positive integer $n$ there exists an integer $a$ with \[\sum^{2011}_{j=1} j x^n_j = a^{n+1} + 1\] [i]Proposed by Warut Suksompong, Thailand[/i]

2003 Purple Comet Problems, 3

Tags:
What is the largest integer whose prime factors add to $14$?

2015 HMMT Geometry, 7

Tags:
Let $ABCD$ be a square pyramid of height $\frac{1}{2}$ with square base $ABCD$ of side length $AB=12$ (so $E$ is the vertex of the pyramid, and the foot of the altitude from $E$ to $ABCD$ is the center of square $ABCD$). The faces $ADE$ and $CDE$ meet at an acute angle of measure $\alpha$ (so that $0^{\circ}<\alpha<90^{\circ}$). Find $\tan \alpha$.

1969 IMO Longlists, 14

$(CZS 3)$ Let $a$ and $b$ be two positive real numbers. If $x$ is a real solution of the equation $x^2 + px + q = 0$ with real coefficients $p$ and $q$ such that $|p| \le a, |q| \le b,$ prove that $|x| \le \frac{1}{2}(a +\sqrt{a^2 + 4b})$ Conversely, if $x$ satisfies the above inequality, prove that there exist real numbers $p$ and $q$ with $|p|\le a, |q|\le b$ such that $x$ is one of the roots of the equation $x^2+px+ q = 0.$

V Soros Olympiad 1998 - 99 (Russia), 9.1

Tags: algebra
Place parentheses in the expression $$2:2 -3:3 - 4: 4-5:5$$ so that the result is a number greater than $39$.