This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2005 Baltic Way, 20

Find all positive integers $n=p_1p_2 \cdots p_k$ which divide $(p_1+1)(p_2+1)\cdots (p_k+1)$ where $p_1 p_2 \cdots p_k$ is the factorization of $n$ into prime factors (not necessarily all distinct).

CIME I 2018, 6

Tags:
Let $\mathcal{P}$ be the set of all polynomials $p(x)=x^4+2x^2+mx+n$, where $m$ and $n$ range over the positive reals. There exists a unique $p(x) \in \mathcal{P}$ such that $p(x)$ has a real root, $m$ is minimized, and $p(1)=99$. Find $n$. [i]Proposed by [b]AOPS12142015[/b][/i]

2017 Denmark MO - Mohr Contest, 1

A system of equations $$\begin{cases} x^2 \,\, ? \,\, z^2 = -8 \\ y^2 \,\, ? \,\, z^2 = 7 \end{cases}$$ is written on a piece of paper, but unfortunately two of the symbols are a little blurred. However, it is known that the system has at least one solution, and that each of the two question marks stands for either $+$ or $-$. What are the two symbols?

1997 Czech and Slovak Match, 2

In a community of more than six people each member exchanges letters with exactly three other members of the community. Show that the community can be partitioned into two nonempty groups so that each member exchanges letters with at least two members of the group he belongs to.

1974 IMO Longlists, 40

Three players $A,B$ and $C$ play a game with three cards and on each of these $3$ cards it is written a positive integer, all $3$ numbers are different. A game consists of shuffling the cards, giving each player a card and each player is attributed a number of points equal to the number written on the card and then they give the cards back. After a number $(\geq 2)$ of games we find out that A has $20$ points, $B$ has $10$ points and $C$ has $9$ points. We also know that in the last game B had the card with the biggest number. Who had in the first game the card with the second value (this means the middle card concerning its value).

2018 Purple Comet Problems, 5

The positive integer $m$ is a multiple of $101$, and the positive integer $n$ is a multiple of $63$. Their sum is $2018$. Find $m - n$.

2006 Harvard-MIT Mathematics Tournament, 7

Tags: probability
Let $n$ be a positive integer, and let Pushover be a game played by two players, standing squarely facing each other, pushing each other, where the first person to lose balance loses. At the HMPT, $2^{n+1}$ competitors, numbered $1$ through $2^{n+1}$ clockwise, stand in a circle. They are equals in Pushover: whenever two of them face off, each has a $50\%$ probability of victory. The tournament unfolds in $n+1$ rounds. In each rounjd, the referee randomly chooses one of the surviving players, and the players pair off going clockwise, starting from the chosen one. Each pair faces off in Pushover, and the losers leave the circle. What is the probability that players $1$ and $2^n$ face each other in the last round? Express your answer in terms of $n$.

2007 ITest, 35

Tags: inequalities
Find the greatest natural number possessing the property that each of its digits except the first and last one is less than the arithmetic mean of the two neighboring digits.

2013 Saudi Arabia BMO TST, 1

Tags: geometry , cyclic
$ABCD$ is a cyclic quadrilateral such that $AB = BC = CA$. Diagonals $AC$ and $BD$ intersect at $E$. Given that $BE = 19$ and $ED = 6$, find the possible values of $AD$.

2007 Stanford Mathematics Tournament, 12

Tags: geometry
Pete has some trouble slicing a 20-inch (diameter) pizza. His first two cuts (from center to circumference of the pizza) make a 30º slice. He continues making cuts until he has gone around the whole pizza, each time trying to copy the angle of the previous slice but in fact adding 2º each time. That is, he makes adjacent slices of 30º, 32º, 34º, and so on. What is the area of the smallest slice?

2020 AIME Problems, 6

Tags: geometry , sphere
A flat board has a circular hole with radius $1$ and a circular hole with radius $2$ such that the distance between the centers of the two holes is 7. Two spheres with equal radii sit in the two holes such that the spheres are tangent to each other. The square of the radius of the spheres is $\frac{m}n$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

1948 Kurschak Competition, 3

Prove that among any $n$ positive integers one can always find some (at least one) whose sum is divisible by $n$.

2012 JBMO ShortLists, 2

Let $ABC$ be an isosceles triangle with $AB=AC$ . Let also $\omega$ be a circle of center $K$ tangent to the line $AC$ at $C$ which intersects the segment $BC$ again at $H$ . Prove that $HK \bot AB $.

2010 Saudi Arabia IMO TST, 1

Let $ABC$ be a triangle with $\angle B \ge 2\angle C$. Denote by $D$ the foot of the altitude from $A$ and by $M$ be the midpoint of $BC$. Prove that $DM \ge \frac{AB}{2}$.

1996 AMC 8, 24

Tags:
The measure of angle $ABC$ is $50^\circ $, $\overline{AD}$ bisects angle $BAC$, and $\overline{DC}$ bisects angle $BCA$. The measure of angle $ADC$ is [asy] pair A,B,C,D; A = (0,0); B = (9,10); C = (10,0); D = (6.66,3); dot(A); dot(B); dot(C); dot(D); draw(A--B--C--cycle); draw(A--D--C); label("$A$",A,SW); label("$B$",B,N); label("$C$",C,SE); label("$D$",D,N); label("$50^\circ $",(9.4,8.8),SW); [/asy] $\text{(A)}\ 90^\circ \qquad \text{(B)}\ 100^\circ \qquad \text{(C)}\ 115^\circ \qquad \text{(D)}\ 122.5^\circ \qquad \text{(E)}\ 125^\circ $

2015 Estonia Team Selection Test, 10

Let $n$ be an integer and $a, b$ real numbers such that $n > 1$ and $a > b > 0$. Prove that $$(a^n - b^n) \left ( \frac{1}{b^{n- 1}} - \frac{1}{a^{n -1}}\right) > 4n(n -1)(\sqrt{a} - \sqrt{b})^2$$

1991 National High School Mathematics League, 5

Tags:
$S=\{(x,y)|x^2-y^2 \text{is odd},x,y\in\mathbb{R}\},T=\{(x,y)|\sin(2\pi x^2)-\sin(2\pi y^2)=\cos(2\pi x^2)-\cos(2\pi y^2),x,y\in\mathbb{R}\}$, then $\text{(A)}S\subset T\qquad\text{(B)}T\subset S\qquad\text{(C)}S=T\qquad\text{(D)}S\cap T=\varnothing$

2000 Canada National Olympiad, 5

Tags: inequalities
Suppose that the real numbers $a_1, a_2, \ldots, a_{100}$ satisfy \begin{eqnarray*} 0 \leq a_{100} \leq a_{99} \leq \cdots \leq a_2 &\leq& a_1 , \\ a_1+a_2 & \leq & 100 \\ a_3+a_4+\cdots+a_{100} &\leq & 100. \end{eqnarray*} Determine the maximum possible value of $a_1^2 + a_2^2 + \cdots + a_{100}^2$, and find all possible sequences $a_1, a_2, \ldots , a_{100}$ which achieve this maximum.

2011 India Regional Mathematical Olympiad, 2

Tags:
Let $n$ be a positive integer such that $2n+1$ and $3n+1$ are both perfect squares. Show that $5n+3$ is a composite number.

2002 National High School Mathematics League, 11

Tags:
If $\log_4 (x+2y)+\log_4 (x-2y)=1$, then the minumum value of $|x|-|y|$ is________.

2012 AMC 12/AHSME, 16

Circle $C_1$ has its center $O$ lying on circle $C_2$. The two circles meet at $X$ and $Y$. Point $Z$ in the exterior of $C_1$ lies on circle $C_2$ and $XZ=13$, $OZ=11$, and $YZ=7$. What is the radius of circle $C_1$? $ \textbf{(A)}\ 5\qquad\textbf{(B)}\ \sqrt{26}\qquad\textbf{(C)}\ 3\sqrt{3}\qquad\textbf{(D)}\ 2\sqrt{7}\qquad\textbf{(E)}\ \sqrt{30} $

1958 February Putnam, A7

Tags: geometry , square
Show that ten equal-sized squares cannot be placed on a plane in such a way that no two have an interior point in common and the first touches each of the others.

1956 Moscow Mathematical Olympiad, 321

Find all two-digit numbers $x$ the sum of whose digits is the same as that of $2x$, $3x$, ... , $9x$.

1966 All Russian Mathematical Olympiad, 074

Can both $(x^2+y)$ and $(y^2+x)$ be exact squares for natural $x$ and $y$?

2015 Swedish Mathematical Competition, 5

Given a finite number of points in the plane as well as many different rays starting at the origin. It is always possible to pair the points with the rays so that they parallell displaced rays starting in respective points do not intersect?