Found problems: 85335
1992 All Soviet Union Mathematical Olympiad, 559
$E$ is a point on the diagonal $BD$ of the square $ABCD$. Show that the points $A, E$ and the circumcenters of $ABE$ and $ADE$ form a square.
2007 Romania National Olympiad, 2
Let $ABC$ be an acute angled triangle and point $M$ chosen differently from $A,B,C$. Prove that $M$ is the orthocenter of triangle $ABC$ if and only if \[\frac{BC}{MA}\vec{MA}+\frac{CA}{MB}\vec{MB}+\frac{AB}{MC}\vec{MC}= \vec{0}\]
2015 Flanders Math Olympiad, 2
Consider two points $Y$ and $X$ in a plane and a variable point $P$ which is not on $XY$. Let the parallel line to $YP$ through $X$ intersect the internal angle bisector of $\angle XYP$ in $A$, and let the parallel line to $XP$ through $Y$ intersect the internal angle bisector of $\angle YXP$ in $B$. Let $AB$ intersect $XP$ and $YP$ in $S$ and $T$ respectively. Show that the product $|XS|*|YT|$ does not depend on the position of $P$.
1996 Polish MO Finals, 2
Let $p(k)$ be the smallest prime not dividing $k$. Put $q(k) = 1$ if $p(k) = 2$, or the product of all primes $< p(k)$ if $p(k) > 2$. Define the sequence $x_0, x_1, x_2, ...$ by $x_0 = 1$, $x_{n+1} = \frac{x_np(x_n)}{q(x_n)}$. Find all $n$ such that $x_n = 111111$
1977 IMO Longlists, 29
In the interior of a square $ABCD$ we construct the equilateral triangles $ABK, BCL, CDM, DAN.$ Prove that the midpoints of the four segments $KL, LM, MN, NK$ and the midpoints of the eight segments $AK, BK, BL, CL, CM, DM, DN, AN$ are the 12 vertices of a regular dodecagon.
2018 HMNT, 9
$20$ players are playing in a Super Mario Smash Bros. Melee tournament. They are ranked $1-20$, and player $n$ will always beat player $m$ if $n<m$. Out of all possible tournaments where each player plays $18$ distinct other players exactly once, one is chosen uniformly at random. Find the expected number of pairs of players that win the same number of games.
2021 Stanford Mathematics Tournament, 2
If two points are picked randomly on the perimeter of a square, what is the probability that the distance between those points is less than the side length of the square?
1956 Putnam, B2
Suppose that each set $X$ of points in the plane has an associated set $\overline{X}$ of points called its cover. Suppose further that (1) $\overline{X\cup Y} \supset \overline{\overline{X}} \cup \overline{Y} \cup Y$ for all sets $X,Y$ . Show that i) $\overline{X} \supset X$, ii) $\overline{\overline{X}}=\overline{X}$ and iii) $X\supset Y \Rightarrow \overline{X} \supset \overline{Y}.$ Prove also that these three statements imply (1).
2017 Iran MO (3rd round), 2
Let $a,b,c$ and $d$ be positive real numbers such that $a^2+b^2+c^2+d^2 \ge 4$. Prove that
$$(a+b)^3+(c+d)^3+2(a^2+b^2+c^2+d^2) \ge 4(ab+bc+cd+da+ac+bd)$$
2003 Indonesia MO, 3
Find all real numbers $x$ such that $\left\lfloor x^2 \right\rfloor + \left\lceil x^2 \right\rceil = 2003$.
2013 AMC 8, 25
A ball with diameter 4 inches starts at point A to roll along the track shown. The track is comprised of 3 semicircular arcs whose radii are $R_1 = 100$ inches, $R_2 = 60$ inches, and $R_3 = 80$ inches, respectively. The ball always remains in contact with the track and does not slip. What is the distance the center of the ball travels over the course from A to B?
[asy]
size(8cm);
draw((0,0)--(480,0),linetype("3 4"));
filldraw(circle((8,0),8),black);
draw((0,0)..(100,-100)..(200,0));
draw((200,0)..(260,60)..(320,0));
draw((320,0)..(400,-80)..(480,0));
draw((100,0)--(150,-50sqrt(3)),Arrow(size=4));
draw((260,0)--(290,30sqrt(3)),Arrow(size=4));
draw((400,0)--(440,-40sqrt(3)),Arrow(size=4));
label("$R_1$",(100,0)--(150,-50sqrt(3)), W, fontsize(10));
label("$R_2$",(260,0)--(290,30sqrt(3)), W, fontsize(10));
label("$R_3$",(400,0)--(440,-40sqrt(3)), W, fontsize(10));
filldraw(circle((8,0),8),black);
label("$A$",(0,0),W,fontsize(10));[/asy]
$\textbf{(A)}\ 238\pi \qquad \textbf{(B)}\ 240\pi \qquad \textbf{(C)}\ 260\pi \qquad \textbf{(D)}\ 280\pi \qquad \textbf{(E)}\ 500\pi$
2021 China Second Round Olympiad, Problem 5
Define the regions $M, N$ in the Cartesian Plane as follows:
\begin{align*}
M &= \{(x, y) \in \mathbb R^2 \mid 0 \leq y \leq \text{min}(2x, 3-x)\} \\
N &= \{(x, y) \in \mathbb R^2 \mid t \leq x \leq t+2 \}
\end{align*}
for some real number $t$. Denote the common area of $M$ and $N$ for some $t$ be $f(t)$. Compute the algebraic form of the function $f(t)$ for $0 \leq t \leq 1$.
[i](Source: China National High School Mathematics League 2021, Zhejiang Province, Problem 5)[/i]
2015 Regional Competition For Advanced Students, 3
Let $n \ge 3$ be a fixed integer. The numbers $1,2,3, \cdots , n$ are written on a board. In every move one chooses two numbers and replaces them by their arithmetic mean. This is done until only a single number remains on the board.
Determine the least integer that can be reached at the end by an appropriate sequence of moves.
(Theresia Eisenkölbl)
1995 Singapore Team Selection Test, 1
Let $N =\{1, 2, 3, ...\}$ be the set of all natural numbers and $f : N\to N$ be a function.
Suppose $f(1) = 1$, $f(2n) = f(n)$ and $f(2n + 1) = f(2n) + 1$ for all natural numbers $n$.
(i) Calculate the maximum value $M$ of $f(n)$ for $n \in N$ with $1 \le n \le 1994$.
(ii) Find all $n \in N$, with 1 \le n \le 1994, such that $f(n) = M$.
2023 IFYM, Sozopol, 4
Find all real numbers $a$ for which there exist functions $f,g: \mathbb{R} \to \mathbb{R}$, where $g$ is strictly increasing, such that $f(1) = 1$, $f(2) = a$, and
\[
f(x) - f(y) \leq (x-y)(g(x) - g(y))
\]
for all real numbers $x$ and $y$.
2010 Miklós Schweitzer, 9
For each $M$ m-dimensional closed $C^{\infty}$ set , assign a $G(m)$ in some euclidean space $\mathbb{R}^{q}$. Denote by $\mathbb{R} \mathbb{P}^{q}$ a $q$-dimensional real projecive space. A$G(M) \subseteq \times \mathbb{R} \mathbb{P}^{q}$. The set consists of $(x,e)$ pairs for which $x \in M \subseteq \mathbb {P}^{q} $ and $e \subseteq \mathbb {R}^{q+1}= \mathbb{R}^{q} \times \mathbb{R}$ and $\mathrm{a} (0, \ldots,0,1) \in \mathbb{R}^{q+1}$ in a stretched $(m+1)$-dimensional linear subspace. Prove that if $N$ is a $n$-dimensional closed set $C^{\infty}$, then $P=G(M \times M)$ and $Q=G(M) \times G(N)$ are cobordant , that is, there exists a $(2m+2n+1)$-dimensional compact , flanged set $C^{\infty}$ with a disjoint union of $P$ and $Q$.
2023 Belarusian National Olympiad, 10.3
Let $a,b,c$ be positive real numbers, that satisfy $abc=1$. Prove the inequality:
$$\frac{ab}{1+c}+\frac{bc}{1+a}+\frac{ca}{1+b} \geq \frac{27}{(a+b+c)(3+a+b+c)}$$
2018 ITAMO, 6
Let $ABC$ be a triangle with $AB=AC$ and let $I$ be its incenter. Let $\Gamma$ be the circumcircle of $ABC$. Lines $BI$ and $CI$ intersect $\Gamma$ in two new points, $M$ and $N$ respectively. Let $D$ be another point on $\Gamma$ lying on arc $BC$ not containing $A$, and let $E,F$ be the intersections of $AD$ with $BI$ and $CI$, respectively. Let $P,Q$ be the intersections of $DM$ with $CI$ and of $DN$ with $BI$ respectively.
(i) Prove that $D,I,P,Q$ lie on the same circle $\Omega$
(ii) Prove that lines $CE$ and $BF$ intersect on $\Omega$
PEN P Problems, 18
Let $p$ be a prime with $p \equiv 1 \pmod{4}$. Let $a$ be the unique integer such that \[p=a^{2}+b^{2}, \; a \equiv-1 \pmod{4}, \; b \equiv 0 \; \pmod{2}\] Prove that \[\sum^{p-1}_{i=0}\left( \frac{i^{3}+6i^{2}+i }{p}\right) = 2 \left( \frac{2}{p}\right),\] where $\left(\frac{k}{p}\right)$ denotes the Legendre Symbol.
2016 IMC, 4
Let $k$ be a positive integer. For each nonnegative integer $n$, let $f(n)$ be the number of solutions $(x_1,\ldots,x_k)\in\mathbb{Z}^k$ of the inequality $|x_1|+...+|x_k|\leq n$. Prove that for every $n\ge1$, we have $f(n-1)f(n+1)\leq f(n)^2$.
(Proposed by Esteban Arreaga, Renan Finder and José Madrid, IMPA, Rio de Janeiro)
1996 Cono Sur Olympiad, 5
We want to cover totally a square(side is equal to $k$ integer and $k>1$) with this rectangles:
$1$ rectangle ($1\times 1$), $2$ rectangles ($2\times 1$), $4$ rectangles ($3\times 1$),...., $2^n$ rectangles ($n + 1 \times 1$), such that the rectangles can't overlap and don't exceed the limits of square.
Find all $k$, such that this is possible and for each $k$ found you have to draw a solution
2021-2022 OMMC, 16
In $\triangle ABC$ with $AB = 10$, $BC = 12$, and $AC = 14$, let $E$ and $F$ be the midpoints of $AB$ and $AC$. If a circle passing through $B$ and $C$ is tangent to the circumcircle of $AEF$ at point $X \ne A$, find $AX$.
[i]Proposed by Vivian Loh [/i]
2010 Germany Team Selection Test, 2
We are given $m,n \in \mathbb{Z}^+.$ Show the number of solution $4-$tuples $(a,b,c,d)$ of the system
\begin{align*}
ab + bc + cd - (ca + ad + db) &= m\\
2 \left(a^2 + b^2 + c^2 + d^2 \right) - (ab + ac + ad + bc + bd + cd) &= n
\end{align*}
is divisible by 10.
1993 Moldova Team Selection Test, 2
A convex quadrilateral has equal diagonals. An equilateral triangle is constructed on the outside of each side of the quadrilateral. The centers of the triangles on opposite sides are joined. Show that the two joining lines are perpendicular.
[i]Alternative formulation.[/i] Given a convex quadrilateral $ ABCD$ with congruent diagonals $ AC \equal{} BD.$ Four regular triangles are errected externally on its sides. Prove that the segments joining the centroids of the triangles on the opposite sides are perpendicular to each other.
[i]Original formulation:[/i] Let $ ABCD$ be a convex quadrilateral such that $ AC \equal{} BD.$ Equilateral triangles are constructed on the sides of the quadrilateral. Let $ O_1,O_2,O_3,O_4$ be the centers of the triangles constructed on $ AB,BC,CD,DA$ respectively. Show that $ O_1O_3$ is perpendicular to $ O_2O_4.$
1968 AMC 12/AHSME, 1
Let $P$ units be the increase in the circumference of a circle resulting from an increase in $\pi$ units in the diameter. Then $P$ equals:
$\textbf{(A)}\ \dfrac{1}{\pi} \qquad
\textbf{(B)}\ \pi \qquad
\textbf{(C)}\ \dfrac{\pi^2}{2} \qquad
\textbf{(D)}\ \pi^2 \qquad
\textbf{(E)}\ 2\pi $