This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2019 Philippine TST, 5

Let $n>1$ be a positive integer. Each cell of an $n\times n$ table contains an integer. Suppose that the following conditions are satisfied: [list=1] [*] Each number in the table is congruent to $1$ modulo $n$. [*] The sum of numbers in any row, as well as the sum of numbers in any column, is congruent to $n$ modulo $n^2$. [/list] Let $R_i$ be the product of the numbers in the $i^{\text{th}}$ row, and $C_j$ be the product of the number in the $j^{\text{th}}$ column. Prove that the sums $R_1+\hdots R_n$ and $C_1+\hdots C_n$ are congruent modulo $n^4$.

2007 Mongolian Mathematical Olympiad, Problem 2

Tags: geometry
Given $101$ segments in a line, prove that there exists $11$ segments meeting in $1$ point or $11$ segments such that every two of them are disjoint.

2018 Bulgaria JBMO TST, 3

Tags: inequalities
Prove for all positive real numbers $m,n,p,q$ that $$\frac{m}{t+n+p+q} + \frac{n}{t+p+q+m} + \frac{p}{t+q+m+n} + \frac{q}{t+m+n+p} \geq \frac{4}{5},$$ where $t=\frac{m+n+p+q}{2}.$

1996 Singapore MO Open, 1

Three numbers are selected at random from the interval $[0,1]$. What is the probability that they form the lengths of the sides of a triangle?

2019 Baltic Way, 8

There are $2019$ cities in the country of Balticwayland. Some pairs of cities are connected by non-intersecting bidirectional roads, each road connecting exactly 2 cities. It is known that for every pair of cities $A$ and $B$ it is possible to drive from $A$ to $B$ using at most $2$ roads. There are $62$ cops trying to catch a robber. The cops and robber all know each others’ locations at all times. Each night, the robber can choose to stay in her current city or move to a neighbouring city via a direct road. Each day, each cop has the same choice of staying or moving, and they coordinate their actions. The robber is caught if she is in the same city as a cop at any time. Prove that the cops can always catch the robber

2006 Portugal MO, 1

Tags: algebra
Alexandre and Herculano are at Campanha station waiting for the train. To entertain themselves, they decide to calculate the length of a freight train that passes through the station without changing its speed. When the front of the train passes them, Alexandre starts walking in the direction of the train's movement and Herculano starts walking in the opposite direction. The two walk at the same speed and each of them stops at the moment they cross the end of the train. Alexandre walked $45$ meters and Herculano $30$. How long is the train?

2012 Bundeswettbewerb Mathematik, 3

An equilateral triangle $DCE$ is placed outside a square $ABCD$. The center of this triangle is denoted as $M$ and the intersection of the straight line $AC$ and $BE$ with $S$. Prove that the triangle $CMS$ is isosceles.

2014 239 Open Mathematical Olympiad, 2

The fourth-degree polynomial $P(x)$ is such that the equation $P(x)=x$ has $4$ roots, and any equation of the form $P(x)=c$ has no more two roots. Prove that the equation $P(x)=-x$ too has no more than two roots.

2013 Nordic, 3

Define a sequence ${(n_k)_{k\ge 0}}$ by ${n_{0 }= n_{1} = 1}$, and ${n_{2k} = n_k + n_{k-1} }$ and ${n_{2k+1} = n_k}$ for ${k \ge 1}$. Let further ${q_k = n_k }$ / ${ n_{k-1} }$ for each ${k \ge 1}$. Show that every positive rational number is present exactly once in the sequence ${(q_k)_{k\ge 1}}$

1993 India Regional Mathematical Olympiad, 7

Tags: vector
In the group of ten persons, each person is asked to write the sum of the ages of all the other nine persons. Of all ten sums form the nine-element set $\{ 82, 83,84,85,87,89,90,91,92 \}$, find the individual ages of the persons, assuming them to be whole numbers.

2002 Chile National Olympiad, 7

A convex polygon of sides $\ell_1, \ell_2, ..., \ell_n$ is called [i]ordered [/i] if for all reordering $( \sigma (1), \sigma (2), ..., \sigma (n))$ of the set $(1, 2,..., n)$ there exists a point $P$ inside the polygon such that $d_{\sigma (1)} < _{\sigma (2)} <...< d_{\sigma (n)}$ , where $d_i$ represents the distance between $P$ and side $\ell_i$. Find all the convex ordered polygons.

2017 Romanian Master of Mathematics, 5

Fix an integer $n \geq 2$. An $n\times n$ sieve is an $n\times n$ array with $n$ cells removed so that exactly one cell is removed from every row and every column. A stick is a $1\times k$ or $k\times 1$ array for any positive integer $k$. For any sieve $A$, let $m(A)$ be the minimal number of sticks required to partition $A$. Find all possible values of $m(A)$, as $A$ varies over all possible $n\times n$ sieves. [i]Palmer Mebane[/i]

2015 Online Math Open Problems, 23

Tags:
Let $N = 12!$ and denote by $X$ the set of positive divisors of $N$ other than $1$. A [i]pseudo-ultrafilter[/i] $U$ is a nonempty subset of $X$ such that for any $a,b \in X$: \begin{itemize} \item If $a$ divides $b$ and $a \in U$ then $b \in U$. \item If $a,b \in U$ then $\gcd(a,b) \in U$. \item If $a,b \notin U$ then $\operatorname{lcm} (a,b) \notin U$. \end{itemize} How many such pseudo-ultrafilters are there? [i]Proposed by Evan Chen[/i]

2019 Saint Petersburg Mathematical Olympiad, 1

Tags: algebra
A polynomial $f(x)$ of degree $2000$ is given. It's known that $f(x^2-1)$ has exactly $3400$ real roots while $f(1-x^2)$ has exactly $2700$ real roots. Prove that there exist two real roots of $f(x)$ such that the difference between them is less that $0.002$. [i](А. Солынин)[/i] [hide=Thanks]Thanks to the user Vlados021 for translating the problem.[/hide]

2018 Saudi Arabia GMO TST, 1

Let $\{x_n\}$ be a sequence defined by $x_1 = 2$ and $x_{n+1} = x_n^2 - x_n + 1$ for $n \ge 1$. Prove that $$1 -\frac{1}{2^{2^{n-1}}} < \frac{1}{x_1}+\frac{1}{x_2}+ ... +\frac{1}{x_n}< 1 -\frac{1}{2^{2^n}}$$ for all $n$

LMT Team Rounds 2021+, 9

Tags: algebra
Let $r_1, r_2, ..., r_{2021}$ be the not necessarily real and not necessarily distinct roots of $x^{2022} + 2021x = 2022$. Let $S_i = r_i^{2021}+2022r_i$ for all $1 \le i \le 2021$. Find $\left|\sum^{2021}_{i=1} S_i \right| = |S_1 +S_2 +...+S_{2021}|$.

2013 Israel National Olympiad, 4

Determine the number of positive integers $n$ satisfying: [list] [*] $n<10^6$ [*] $n$ is divisible by 7 [*] $n$ does not contain any of the digits 2,3,4,5,6,7,8. [/list]

2019 Iranian Geometry Olympiad, 2

Tags: geometry
Find all quadrilaterals $ABCD$ such that all four triangles $DAB$, $CDA$, $BCD$ and $ABC$ are similar to one-another. [i]Proposed by Morteza Saghafian[/i]

2010 India IMO Training Camp, 5

Given an integer $k>1$, show that there exist an integer an $n>1$ and distinct positive integers $a_1,a_2,\cdots a_n$, all greater than $1$, such that the sums $\sum_{j=1}^n a_j$ and $\sum_{j=1}^n \phi (a_j)$ are both $k$-th powers of some integers. (Here $\phi (m)$ denotes the number of positive integers less than $m$ and relatively prime to $m$.)

1996 Portugal MO, 2

Prove that given three positive numbers, we can choose two of them, say $x$ and $y,$ with $x >y$ such that $$\frac{x-y}{1 +xy }<1.$$ Prove also that if the number $1$ that appears in the second member of the previous inequality is replaced by a lower number, even if very close to $1$, the previous proposition is false.

2020 Switzerland - Final Round, 1

Let $\mathbb N$ be the set of positive integers. Find all functions $f\colon\mathbb N\to \mathbb N$ such that for every $m,n\in \mathbb N$, \[ f(m)+f(n)\mid m+n. \]

1973 Chisinau City MO, 65

A finite number of chords is drawn in a circle $1$ cm in diameter so that any diameter of the circle intersects at most $N$ of these chords. Prove that the sum of the lengths of all chords is less than $3.15 \cdot N$ cm.

2023 Germany Team Selection Test, 3

Two triangles $ABC, A’B’C’$ have the same orthocenter $H$ and the same circumcircle with center $O$. Letting $PQR$ be the triangle formed by $AA’, BB’, CC’$, prove that the circumcenter of $PQR$ lies on $OH$.

2001 German National Olympiad, 4

In how many ways can the ”Nikolaus’ House” (see the picture) be drawn? Edges may not be erased nor duplicated, and no additional edges may be drawn. [img]https://cdn.artofproblemsolving.com/attachments/0/5/33795820e0335686b06255180af698e536a9be.png[/img]

2001 China Team Selection Test, 3

Consider the problem of expressing $42$ as \(42 = x^3 + y^3 + z^3 - w^2\), where \(x, y, z, w\) are integers. Determine the number of ways to represent $42$ in this form and prove your conclusion.