Found problems: 85335
2015 South East Mathematical Olympiad, 5
Given two points $E$ and $F$ lie on segment $AB$ and $AD$, respectively. Let the segments $BF$ and $DE$ intersects at point $C$. If it’s known that $AE+EC=AF+FC$, show that $AB+BC=AD+DC$.
2021 Thailand TST, 3
Consider any rectangular table having finitely many rows and columns, with a real number $a(r, c)$ in the cell in row $r$ and column $c$. A pair $(R, C)$, where $R$ is a set of rows and $C$ a set of columns, is called a [i]saddle pair[/i] if the following two conditions are satisfied:
[list]
[*] $(i)$ For each row $r^{\prime}$, there is $r \in R$ such that $a(r, c) \geqslant a\left(r^{\prime}, c\right)$ for all $c \in C$;
[*] $(ii)$ For each column $c^{\prime}$, there is $c \in C$ such that $a(r, c) \leqslant a\left(r, c^{\prime}\right)$ for all $r \in R$.
[/list]
A saddle pair $(R, C)$ is called a [i]minimal pair[/i] if for each saddle pair $\left(R^{\prime}, C^{\prime}\right)$ with $R^{\prime} \subseteq R$ and $C^{\prime} \subseteq C$, we have $R^{\prime}=R$ and $C^{\prime}=C$. Prove that any two minimal pairs contain the same number of rows.
1993 Irish Math Olympiad, 4
Let $ f(x)\equal{}x^n\plus{}a_{n\minus{}1} x^{n\minus{}1}\plus{}...\plus{}a_0$ $ (n \ge 1)$ be a polynomial with real coefficients such that $ |f(0)|\equal{}f(1)$ and each root $ \alpha$ of $ f$ is real and lies in the interval $ [0,1]$. Prove that the product of the roots does not exceed $ \frac{1}{2^n}$.
1997 China Team Selection Test, 3
There are 1997 pieces of medicine. Three bottles $A, B, C$ can contain at most 1997, 97, 19 pieces of medicine respectively. At first, all 1997 pieces are placed in bottle $A$, and the three bottles are closed. Each piece of medicine can be split into 100 part. When a bottle is opened, all pieces of medicine in that bottle lose a part each. A man wishes to consume all the medicine. However, he can only open each of the bottles at most once each day, consume one piece of medicine, move some pieces between the bottles, and close them. At least how many parts will be lost by the time he finishes consuming all the medicine?
1994 China Team Selection Test, 1
Find all sets comprising of 4 natural numbers such that the product of any 3 numbers in the set leaves a remainder of 1 when divided by the remaining number.
2014 France Team Selection Test, 3
Prove that there exist infinitely many positive integers $n$ such that the largest prime divisor of $n^4 + n^2 + 1$ is equal to the largest prime divisor of $(n+1)^4 + (n+1)^2 +1$.
2020 Iran MO (3rd Round), 1
Let $ABCD$ be a Rhombus and let $w$ be it's incircle. Let $M$ be the midpoint of $AB$ the point $K$ is on $w$ and inside $ABCD$ such that $MK$ is tangent to $w$. Prove that $CDKM$ is cyclic.
1984 AMC 12/AHSME, 9
The number of digits in $4^{16} 5^{25}$ (when written in the usual base 10 form) is
A. 31
B. 30
C. 29
D. 28
E. 27
2001 AMC 12/AHSME, 18
A circle centered at $ A$ with a radius of 1 and a circle centered at $ B$ with a radius of 4 are externally tangent. A third circle is tangent to the first two and to one of their common external tangents as shown. The radius of the third circle is
[asy]
size(220);
real r1 = 1;
real r2 = 3;
real r = (r1*r2)/((sqrt(r1)+sqrt(r2))**2);
pair A=(0,r1), B=(2*sqrt(r1*r2),r2);
dot(A); dot(B);
draw( circle(A,r1) );
draw( circle(B,r2) );
draw( (-1.5,0)--(7.5,0) );
draw( A -- (A+dir(210)*r1) );
label("$1$", A -- (A+dir(210)*r1), N );
draw( B -- (B+r2*dir(330)) );
label("$4$", B -- (B+r2*dir(330)), N );
label("$A$",A,dir(330));
label("$B$",B, dir(140));
draw( circle( (2*sqrt(r1*r),r), r ));
[/asy]
$ \displaystyle \textbf{(A)} \ \frac {1}{3} \qquad \textbf{(B)} \ \frac {2}{5} \qquad \textbf{(C)} \ \frac {5}{12} \qquad \textbf{(D)} \ \frac {4}{9} \qquad \textbf{(E)} \ \frac {1}{2}$
2019 IFYM, Sozopol, 6
Prove that for $\forall$ $z\in \mathbb{C}$ the following inequality is true:
$|z|^2+2|z-1|\geq 1$,
where $"="$ is reached when $z=1$.
2009 Mediterranean Mathematics Olympiad, 3
Decide whether the integers $1,2,\ldots,100$ can be arranged in the cells $C(i, j)$ of a $10\times10$ matrix (where $1\le i,j\le 10$), such that the following conditions are fullfiled:
i) In every row, the entries add up to the same sum $S$.
ii) In every column, the entries also add up to this sum $S$.
iii) For every $k = 1, 2, \ldots, 10$ the ten entries $C(i, j)$ with $i-j\equiv k\bmod{10}$ add up to $S$.
[i](Proposed by Gerhard Woeginger, Austria)[/i]
2018 Portugal MO, 6
A triangle is divided into nine smaller triangles, where counters with the number zero are placed at each of the ten vertices. A [i]movement[/i] consists of choosing one of the nine triangles and applying the same operation to the three counters of that triangle: adding a unit or subtracting a unit. The figure illustrates a possible [i]movement[/i].
We shall call the integer number n [i]dominant [/i] if it is possible, after a few moves, to obtain a configuration in which the counter numbers are all consecutive and the largest of these numbers is $n$.
Determine all [i]dominant [/i] numbers.
[img]https://cdn.artofproblemsolving.com/attachments/7/3/731160e6e9a2b3292a31c4555d4adbc7028596.png[/img]
2024 Princeton University Math Competition, A8
Let $E$ be the ellipse lying in the $x, y$ plane centered at $(0, 0)$ with semi-major axis of length $2$ along the $x$-axis and semi-minor axis of length $1$ along the $y$-axis. Let $C$ be a cone created by revolving two perpendicular lines about an angle bisector of the perpendicular angle. There are some points $(x, y, z)$ where the vertex of $C$ could be so that $E$ is the intersection of $C$ with the $x, y$ plane. These points define a convex polygon in the $x, z$ plane. The area of this polygon can be expressed as $\sqrt{n}$ for some positive integer $n.$ Find $n.$
(Some definitions: the semi-major axis is the longest distance from the center of the ellipse to the boundary, and the semi-minor axis is the shortest distance from the center of the ellipse to the boundary.)
1999 Brazil Team Selection Test, Problem 4
Let Q+ and Z denote the set of positive rationals and the set of inte-
gers, respectively. Find all functions f : Q+ → Z satisfying the following
conditions:
(i) f(1999) = 1;
(ii) f(ab) = f(a) + f(b) for all a, b ∈ Q+;
(iii) f(a + b) ≥ min{f(a), f(b)} for all a, b ∈ Q+.
1997 Czech And Slovak Olympiad IIIA, 5
For a given integer $n \ge 2$, find the maximum possible value of $V_n = \sin x_1 \cos x_2 +\sin x_2 \cos x_3 +...+\sin x_n \cos x_1$, where $x_1,x_2,...,x_n$ are real numbers.
1999 Tournament Of Towns, 5
Tireless Thomas and Jeremy construct a sequence. At the beginning there is one positive integer in the sequence. Then they successively write new numbers in the sequence in the following way: Thomas obtains the next number by adding to the previous number one of its (decimal) digits, while Jeremy obtains the next number by subtracting from the previous number one of its digits. Prove that there is a number in this sequence which will be repeated at least $100$ times.
(A Shapovalov)
2013 USAMO, 3
Let $n$ be a positive integer. There are $\tfrac{n(n+1)}{2}$ marks, each with a black side and a white side, arranged into an equilateral triangle, with the biggest row containing $n$ marks. Initially, each mark has the black side up. An [i]operation[/i] is to choose a line parallel to the sides of the triangle, and flipping all the marks on that line. A configuration is called [i]admissible [/i] if it can be obtained from the initial configuration by performing a finite number of operations. For each admissible configuration $C$, let $f(C)$ denote the smallest number of operations required to obtain $C$ from the initial configuration. Find the maximum value of $f(C)$, where $C$ varies over all admissible configurations.
2015 Thailand Mathematical Olympiad, 8
Let $m$ and $n$ be positive integers such that $m - n$ is odd. Show that $(m + 3n)(5m + 7n)$ is not a perfect square.
2007 Iran MO (3rd Round), 5
Prove that for two non-zero polynomials $ f(x,y),g(x,y)$ with real coefficients the system:
\[ \left\{\begin{array}{c}f(x,y)\equal{}0\\ g(x,y)\equal{}0\end{array}\right.\]
has finitely many solutions in $ \mathbb C^{2}$ if and only if $ f(x,y)$ and $ g(x,y)$ are coprime.
2002 District Olympiad, 3
[b]a)[/b] Calculate $ \lim_{n\to\infty} \int_0^{\alpha } \ln \left( 1+x+x^2+\cdots +x^{n-1} \right) dx , $ for all $ \alpha\in (0,1) . $
[b]b)[/b] Calculate $ \lim_{n\to\infty} \int_0^{1 } \ln \left( 1+x+x^2+\cdots +x^{n-1} \right) dx . $
2016 India Regional Mathematical Olympiad, 6
$ABC$ is an equilateral triangle with side length $11$ units. Consider the points $P_1,P_2, \dots, P_10$ dividing segment $BC$ into $11$ parts of unit length. Similarly, define $Q_1, Q_2, \dots, Q_10$ for the side $CA$ and $R_1,R_2,\dots, R_10$ for the side $AB$. Find the number of triples $(i,j,k)$ with $i,j,k \in \{1,2,\dots,10\}$ such that the centroids of triangles $ABC$ and $P_iQ_jR_k$ coincide.
2007 Putnam, 5
Suppose that a finite group has exactly $ n$ elements of order $ p,$ where $ p$ is a prime. Prove that either $ n\equal{}0$ or $ p$ divides $ n\plus{}1.$
2004 Cuba MO, 8
Determine all functions $f : R_+ \to R_+$ such that:
a) $f(xf(y))f(y) = f(x + y)$ for $x, y \ge 0$
b) $f(2) = 0$
c) $f(x) \ne 0$ for $0 \le x < 2$.
1999 Gauss, 14
Which of the following numbers is an odd integer, contains the digit 5, is divisible by 3, and lies between $12^2$ and $13^2$?
$\textbf{(A)}\ 105 \qquad \textbf{(B)}\ 147 \qquad \textbf{(C)}\ 156 \qquad \textbf{(D)}\ 165 \qquad \textbf{(E)}\ 175$
2023 HMNT, 7
Compute all ordered triples $(x, y, z)$ of real numbers satisfying the following system of equations:
$$xy + z = 40$$
$$xz + y = 51$$
$$x + y + z = 19.$$