This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

1964 Bulgaria National Olympiad, Problem 4

Tags: geometry
Let $a_1,b_1,c_1$ are three lines each two of them are mutually crossed and aren't parallel to some plane. The lines $a_2,b_2,c_2$ intersect the lines $a_1,b_1,c_1$ at the points $a_2$ in $A$, $C_2$, $B_1$; $b_2$ in $C_1$, $B$, $A_2$; $c_2$ in $B_2$, $A_1$, $C$ respectively in such a way that $A$ is the perpendicular bisector of $B_1C_2$, $B$ is the perpendicular bisector of $C_1A_2$ and $C$ is the perpendicular bisector of $A_1B_2$. Prove that: (a) $A$ is the perpendicular bisector of $B_2C_1$, $B$ is the perpendicular bisector of $C_2A_1$ and $C$ is the perpendicular bisector of $A_2B_1$; (b) triangles $A_1B_1C_1$ and $A_2B_2C_2$ are the same.

2013 AMC 12/AHSME, 18

Six spheres of radius $1$ are positioned so that their centers are at the vertices of a regular hexagon of side length $2$. The six spheres are internally tangent to a larger sphere whose center is the center of the hexagon. An eighth sphere is externally tangent to the six smaller spheres and internally tangent to the larger sphere. What is the radius of this eighth sphere? $ \textbf{(A)} \ \sqrt{2} \qquad \textbf{(B)} \ \frac{3}{2} \qquad \textbf{(C)} \ \frac{5}{3} \qquad \textbf{(D)} \ \sqrt{3} \qquad \textbf{(E)} \ 2$

2008 Czech and Slovak Olympiad III A, 3

Find the greatest value of $p$ and the smallest value of $q$ such that for any triangle in the plane, the inequality \[p<\frac{a+m}{b+n}<q\] holds, where $a,b$ are it's two sides and $m,n$ their corresponding medians.

Cono Sur Shortlist - geometry, 2020.G1.4

Let $ABC$ be an acute scalene triangle. $D$ and $E$ are variable points in the half-lines $AB$ and $AC$ (with origin at $A$) such that the symmetric of $A$ over $DE$ lies on $BC$. Let $P$ be the intersection of the circles with diameter $AD$ and $AE$. Find the locus of $P$ when varying the line segment $DE$.

2012 IMAR Test, 2

Given an integer $n \ge 2$, evaluate $\Sigma \frac{1}{pq}$ ,where the summation is over all coprime integers $p$ and $q$ such that $1 \le p < q \le n$ and $p + q > n$.

2012 Spain Mathematical Olympiad, 3

Let $x$ and $n$ be integers such that $1\le x\le n$. We have $x+1$ separate boxes and $n-x$ identical balls. Define $f(n,x)$ as the number of ways that the $n-x$ balls can be distributed into the $x+1$ boxes. Let $p$ be a prime number. Find the integers $n$ greater than $1$ such that the prime number $p$ is a divisor of $f(n,x)$ for all $x\in\{1,2,\ldots ,n-1\}$.

2021-IMOC, A3

For any real numbers $x, y, z$ with $xyz + x + y + z = 4, $show that $$(yz + 6)^2 + (zx + 6)^2 + (xy + 6)^2 \geq 8 (xyz + 5).$$

1998 Croatia National Olympiad, Problem 2

Find all positive integer solutions of the equation $10(m+n)=mn$.

1998 Putnam, 6

Prove that, for any integers $a,b,c$, there exists a positive integer $n$ such that $\sqrt{n^3+an^2+bn+c}$ is not an integer.

2008 Moldova Team Selection Test, 3

Let $ \omega$ be the circumcircle of $ ABC$ and let $ D$ be a fixed point on $ BC$, $ D\neq B$, $ D\neq C$. Let $ X$ be a variable point on $ (BC)$, $ X\neq D$. Let $ Y$ be the second intersection point of $ AX$ and $ \omega$. Prove that the circumcircle of $ XYD$ passes through a fixed point.

2020 Regional Competition For Advanced Students, 4

Find all quadruples $(p, q, r, n)$ of prime numbers $p, q, r$ and positive integer numbers $n$, such that $$p^2 = q^2 + r^n$$ (Walther Janous)

2024 Harvard-MIT Mathematics Tournament, 19

Tags: guts
let $A_1A_2\ldots A_{19}$ be a regular nonadecagon. Lines $A_1A_5$ and $A_3A_4$ meet at $X.$ Compute $\angle A_7 X A_5.$

2000 BAMO, 5

Alice plays the following game of solitaire on a $20 \times 20$ chessboard. She begins by placing $100$ pennies, $100$ nickels, $100$ dimes, and $100$ quarters on the board so that each of the $400$ squares contains exactly one coin. She then chooses $59$ of these coins and removes them from the board. After that, she removes coins, one at a time, subject to the following rules: - A penny may be removed only if there are four squares of the board adjacent to its square (up, down, left, and right) that are vacant (do not contain coins). Squares “off the board” do not count towards this four: for example, a non-corner square bordering the edge of the board has three adjacent squares, so a penny in such a square cannot be removed under this rule, even if all three adjacent squares are vacant. - A nickel may be removed only if there are at least three vacant squares adjacent to its square. (And again, “off the board” squares do not count.) - A dime may be removed only if there are at least two vacant squares adjacent to its square (“off the board” squares do not count). - A quarter may be removed only if there is at least one vacant square adjacent to its square (“off the board” squares do not count). Alice wins if she eventually succeeds in removing all the coins. Prove that it is impossiblefor her to win.

2014 ASDAN Math Tournament, 2

Tags:
Compute the number of integers between $1$ and $100$, inclusive, that have an odd number of factors. Note that $1$ and $4$ are the first two such numbers.

2019 Putnam, A3

Tags:
Given real numbers $b_0,b_1,\ldots, b_{2019}$ with $b_{2019}\neq 0$, let $z_1,z_2,\ldots, z_{2019}$ be the roots in the complex plane of the polynomial \[ P(z) = \sum_{k=0}^{2019}b_kz^k. \] Let $\mu = (|z_1|+ \cdots + |z_{2019}|)/2019$ be the average of the distances from $z_1,z_2,\ldots, z_{2019}$ to the origin.  Determine the largest constant $M$ such that $\mu\geq M$ for all choices of $b_0,b_1,\ldots, b_{2019}$ that satisfy \[ 1\leq b_0 < b_1 < b_2 < \cdots < b_{2019} \leq 2019. \]

2024 Baltic Way, 2

Let $\mathbb{R}^+$ be the set of all positive real numbers. Find all functions $f: \mathbb{R}^+\to\mathbb{R}^+$ such that \[ \frac{f(a)}{1+a+ca}+\frac{f(b)}{1+b+ab}+\frac{f(c)}{1+c+bc} = 1 \] for all $a,b,c \in \mathbb{R}^+$ that satisfy $abc=1$.

2008 Germany Team Selection Test, 1

Show that there is a digit unequal to 2 in the decimal represesentation of $ \sqrt [3]{3}$ between the $ 1000000$-th und $ 3141592$-th position after decimal point.

1990 All Soviet Union Mathematical Olympiad, 524

$A, B, C$ are adjacent vertices of a regular $2n$-gon and $D$ is the vertex opposite to $B$ (so that $BD$ passes through the center of the $2n$-gon). $X$ is a point on the side $AB$ and $Y$ is a point on the side $BC$ so that $XDY = \frac{\pi}{2n}$. Show that $DY$ bisects $\angle XYC$.

2016 May Olympiad, 2

In a sports competition in which several tests are carried out, only the three athletes $A, B, C$. In each event, the winner receives $x$ points, the second receives $y$ points, and the third receives $z$ points. There are no ties, and the numbers $x, y, z$ are distinct positive integers with $x$ greater than $y$, and $y$ greater than $z$. At the end of the competition it turns out that $A$ has accumulated $20$ points, $B$ has accumulated $10$ points and $C$ has accumulated $9$ points. We know that athlete $A$ was second in the 100-meter event. Determine which of the three athletes he was second in the jumping event.

2024 AIME, 3

Tags:
Find the number of ways to place a digit in each cell of a $2 \times 3$ grid so that the sum of the two numbers formed by reading left to right is $999$, and the sum of the three numbers formed by reading top to bottom is $99$. The grid below is an example of such an arrangement because $8+991 = 999$ and $9+9+81 = 99$. [asy] unitsize(0.7cm); draw((0,0)--(3,0)); draw((0,1)--(3,1)); draw((0,2)--(3,2)); draw((0,0)--(0,2)); draw((1,0)--(1,2)); draw((2,0)--(2,2)); draw((3,0)--(3,2)); label("$9$", (0.5,0.5)); label("$9$", (1.5,0.5)); label("$1$", (2.5,0.5)); label("$0$", (0.5,1.5)); label("$0$", (1.5,1.5)); label("$8$", (2.5,1.5)); [/asy]

1990 Irish Math Olympiad, 3

Determine whether there exists a function $ f: \mathbb{N}\longrightarrow \mathbb{N}$ such that $ f(n)\equal{}f(f(n\minus{}1))\plus{}f(f(n\plus{}1))$ for all natural numbers $ n\ge 2$.

2016 China Northern MO, 5

Tags: algebra
$a_1=2,a_{n+1}=\frac{2^{n+1}a_n}{(n+\frac{1}{2})a_n+2^n}(n\in\mathbb{Z}_+)$ [b](a)[/b] Find $a_n$. [b](b)[/b] Let $b_n=\frac{n^3+2n^2+2n+2}{n(n+1)(n^2+1)a_n}$. Find $S_n=\sum_{i=1}^nb_i$.

1978 AMC 12/AHSME, 11

If $r$ is positive and the line whose equation is $x + y = r$ is tangen to the circle whose equation is $x^2 + y ^2 = r$, then $r$ equals $\textbf{(A) }\frac{1}{2}\qquad\textbf{(B) }1\qquad\textbf{(C) }2\qquad\textbf{(D) }\sqrt{2}\qquad \textbf{(E) }2\sqrt{2}$

1970 AMC 12/AHSME, 25

Tags: function
For every real number $x$, let $[x]$ be the greatest integer less than or equal to $x$. If the postal rate for first class mail is six cents for every ounce or portion thereof, then the cost in cents of first-class postage on a letter weighing $W$ ounces is always $\textbf{(A) }6W\qquad\textbf{(B) }6[W]\qquad\textbf{(C) }6([W]-1)\qquad\textbf{(D) }6([W]+1)\qquad \textbf{(E) }-6[-W]$

2014 Contests, 1

Let $f(x)$ is such function, that $f(x)=1$ for integer $x$ and $f(x)=0$ for non integer $x$. Build such function using only variable $x$, integer numbers, and operations $+,-,*,/,[.]$(plus, minus, multiply,divide and integer part)