This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2007 IMO Shortlist, 3

Let $ X$ be a set of 10,000 integers, none of them is divisible by 47. Prove that there exists a 2007-element subset $ Y$ of $ X$ such that $ a \minus{} b \plus{} c \minus{} d \plus{} e$ is not divisible by 47 for any $ a,b,c,d,e \in Y.$ [i]Author: Gerhard Wöginger, Netherlands[/i]

2021 MOAA, 2

Tags:
Add one pair of brackets to the expression \[1+2\times 3+4\times 5+6\] so that the resulting expression has a valid mathematical value, e.g., $1+2\times (3 + 4\times 5)+6=53$. What is the largest possible value that one can make? [i]Proposed by Nathan Xiong[/i]

1976 IMO Shortlist, 4

A sequence $(u_{n})$ is defined by \[ u_{0}=2 \quad u_{1}=\frac{5}{2}, u_{n+1}=u_{n}(u_{n-1}^{2}-2)-u_{1} \quad \textnormal{for } n=1,\ldots \] Prove that for any positive integer $n$ we have \[ [u_{n}]=2^{\frac{(2^{n}-(-1)^{n})}{3}} \](where [x] denotes the smallest integer $\leq$ x)$.$

1999 Moldova Team Selection Test, 15

Tags:
Distinct integers $x,y,z{}$ verify the relation $(x-y)(y-z)(z-x)=x+y+z$. Find the smallest possibile value of $|x+y+z|$.

2017 Rioplatense Mathematical Olympiad, Level 3, 1

Let $a$ be a fixed positive integer. Find the largest integer $b$ such that $(x+a)(x+b)=x+a+b$, for some integer $x$.

1986 Vietnam National Olympiad, 3

A sequence of positive integers is constructed as follows: the first term is $ 1$, the following two terms are $ 2$, $ 4$, the following three terms are $ 5$, $ 7$, $ 9$, the following four terms are $ 10$, $ 12$, $ 14$, $ 16$, etc. Find the $ n$-th term of the sequence.

2012 ELMO Shortlist, 8

Consider the equilateral triangular lattice in the complex plane defined by the Eisenstein integers; let the ordered pair $(x,y)$ denote the complex number $x+y\omega$ for $\omega=e^{2\pi i/3}$. We define an $\omega$-chessboard polygon to be a (non self-intersecting) polygon whose sides are situated along lines of the form $x=a$ or $y=b$, where $a$ and $b$ are integers. These lines divide the interior into unit triangles, which are shaded alternately black and white so that adjacent triangles have different colors. To tile an $\omega$-chessboard polygon by lozenges is to exactly cover the polygon by non-overlapping rhombuses consisting of two bordering triangles. Finally, a [i]tasteful tiling[/i] is one such that for every unit hexagon tiled by three lozenges, each lozenge has a black triangle on its left (defined by clockwise orientation) and a white triangle on its right (so the lozenges are BW, BW, BW in clockwise order). a) Prove that if an $\omega$-chessboard polygon can be tiled by lozenges, then it can be done so tastefully. b) Prove that such a tasteful tiling is unique. [i]Victor Wang.[/i]

1997 Romania National Olympiad, 2

Tags: inequalities
I found this inequality in "Topics in Inequalities" (I 85) For all positive reals $x,y,z$ with $xyz=1$ prove: \[ \frac{x^9+y^9}{x^6+x^3y^3+y^6}+\frac{y^9+z^9}{y^6+y^3z^3+z^6}+\frac{z^9+x^9}{z^6+z^3x^3+x^6}\geq 2 \]

2012 China Team Selection Test, 2

Given two integers $m,n$ which are greater than $1$. $r,s$ are two given positive real numbers such that $r<s$. For all $a_{ij}\ge 0$ which are not all zeroes,find the maximal value of the expression \[f=\frac{(\sum_{j=1}^{n}(\sum_{i=1}^{m}a_{ij}^s)^{\frac{r}{s}})^{\frac{1}{r}}}{(\sum_{i=1}^{m})\sum_{j=1}^{n}a_{ij}^r)^{\frac{s}{r}})^{\frac{1}{s}}}.\]

2020 IMC, 5

Find all twice continuously differentiable functions $f: \mathbb{R} \to (0, \infty)$ satisfying $f''(x)f(x) \ge 2f'(x)^2.$

2023 Chile Classification NMO Seniors, 3

Tags: geometry
In the convex quadrilateral $ABCD$, $M$ is the midpoint of side $AD$, $AD = BD$, lines $CM$ and $AB$ are parallel, and $3\angle LBAC = \angle LACD$. Find the measure of angle $\angle ACB$.

1995 AMC 8, 22

Tags:
The number $6545$ can be written as a product of a pair of positive two-digit numbers. What is the sum of this pair of numbers? $\text{(A)}\ 162 \qquad \text{(B)}\ 172 \qquad \text{(C)}\ 173 \qquad \text{(D)}\ 174 \qquad \text{(E)}\ 222$

2011 Swedish Mathematical Competition, 1

Determine all positive integers $k$, $\ell$, $m$ and $n$, such that $$\frac{1}{k!}+\frac{1}{\ell!}+\frac{1}{m!} =\frac{1}{n!} $$

2006 MOP Homework, 5

Tags: geometry
Show that among the vertices of any area $1$ convex polygon with $n > 3$ sides there exist four such that the quadrilateral formed by these four has area at least $1/2$.

2020 IMO Shortlist, N6

For a positive integer $n$, let $d(n)$ be the number of positive divisors of $n$, and let $\varphi(n)$ be the number of positive integers not exceeding $n$ which are coprime to $n$. Does there exist a constant $C$ such that $$ \frac {\varphi ( d(n))}{d(\varphi(n))}\le C$$ for all $n\ge 1$ [i]Cyprus[/i]

2018 Online Math Open Problems, 13

Tags:
Find the smallest positive integer $n$ for which the polynomial \[x^n-x^{n-1}-x^{n-2}-\cdots -x-1\] has a real root greater than $1.999$. [i]Proposed by James Lin

2010 AIME Problems, 9

Let $ (a,b,c)$ be the real solution of the system of equations $ x^3 \minus{} xyz \equal{} 2$, $ y^3 \minus{} xyz \equal{} 6$, $ z^3 \minus{} xyz \equal{} 20$. The greatest possible value of $ a^3 \plus{} b^3 \plus{} c^3$ can be written in the form $ \frac{m}{n}$, where $ m$ and $ n$ are relatively prime positive integers. Find $ m \plus{} n$.

2018 AMC 10, 4

Tags: 3d geometry
4. A three-dimensional rectangular box with dimensions $X$, $Y$, and $Z$ has faces whose surface areas are $24$, $24$, $48$, $48$, $72$, and $72$ square units. What is $X + Y + Z$? $\textbf{(A)} \text{ 18} \qquad \textbf{(B)} \text{ 22} \qquad \textbf{(C)} \text{ 24} \qquad \textbf{(D)} \text{ 30} \qquad \textbf{(E)} \text{ 36}$

2022 Stanford Mathematics Tournament, 2

Tags:
Let $ABC$ be an acute, scalene triangle. Let $H$ be the orthocenter. Let the circle going through $B$, $H$, and $C$ intersect $CA$ again at $D$. Given that $\angle ABH=20^\circ$, find, in degrees, $\angle BDC$.

2017 Argentina National Math Olympiad Level 2, 1

On a table, there are $16$ weights of the same appearance, which have all the integer weights from $13$ to $28$ grams, that is, they weigh $13, 14, 15, \dots, 28$ grams. Determine the four weights that weigh $13, 14, 27, 28$ grams, using a two-pan balance at most $26$ times.

2006 QEDMO 2nd, 2

There are $N$ cities in the country. Any two of them are connected either by a road or by an airway. A tourist wants to visit every city exactly once and return to the city at which he started the trip. Prove that he can choose a starting city and make a path, changing means of transportation at most once.

2004 National Chemistry Olympiad, 60

Tags:
Most enzymes are a type of $ \textbf{(A) } \text{Carbohydrate} \qquad\textbf{(B) } \text{Lipid} \qquad\textbf{(C) } \text{Nucleic Acid} \qquad\textbf{(D) } \text{Protein} \qquad $

2019 India Regional Mathematical Olympiad, 2

Given a circle $\tau$, let $P$ be a point in its interior, and let $l$ be a line through $P$. Construct with proof using ruler and compass, all circles which pass through $P$, are tangent to $\tau$ and whose center lies on line $l$.

2009 Harvard-MIT Mathematics Tournament, 4

Tags: ratio , geometry
A [i]kite[/i] is a quadrilateral whose diagonals are perpendicular. Let kite $ABCD$ be such that $\angle B = \angle D = 90^\circ$. Let $M$ and $N$ be the points of tangency of the incircle of $ABCD$ to $AB$ and $BC$ respectively. Let $\omega$ be the circle centered at $C$ and tangent to $AB$ and $AD$. Construct another kite $AB^\prime C^\prime D^\prime$ that is similar to $ABCD$ and whose incircle is $\omega$. Let $N^\prime$ be the point of tangency of $B^\prime C^\prime$ to $\omega$. If $MN^\prime \parallel AC$, then what is the ratio of $AB:BC$?

2004 Miklós Schweitzer, 2

Tags: graph theory
Write $t(G)$ for the number of complete quadrilaterals in the graph $G$ and $e_G(S)$ for the number of edges spanned by a subset $S$ of vertices of $G$. Let $G_1, G_2$ be two (simple) graphs on a common underlying set $V$ of vertices, $|V|-n$, and assume that $|e_{G_1}(S)-e_{G_2}(S)|<\frac{n^2}{1000}$ holds for any subset $S\subseteq V$. Prove that $|t(G_1)-t(G_2)|\le \frac{n^4}{1000}$.