This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2011 Benelux, 3

If $k$ is an integer, let $\mathrm{c}(k)$ denote the largest cube that is less than or equal to $k$. Find all positive integers $p$ for which the following sequence is bounded: $a_0 = p$ and $a_{n+1} = 3a_n-2\mathrm{c}(a_n)$ for $n \geqslant 0$.

2001 USAMO, 5

Let $S$ be a set of integers (not necessarily positive) such that (a) there exist $a,b \in S$ with $\gcd(a,b)=\gcd(a-2,b-2)=1$; (b) if $x$ and $y$ are elements of $S$ (possibly equal), then $x^2-y$ also belongs to $S$. Prove that $S$ is the set of all integers.

2022 Pan-African, 1

Let $ABC$ be a triangle with $\angle ABC \neq 90^\circ$, and $AB$ its shortest side. Let $H$ be the orthocenter of $ABC$. Let $\Gamma$ be the circle with center $B$ and radius $BA$. Let $D$ be the second point where the line $CA$ meets $\Gamma$. Let $E$ be the second point where $\Gamma$ meets the circumcircle of the triangle $BCD$. Let $F$ be the intersection point of the lines $DE$ and $BH$. Prove that the line $BD$ is tangent to the circumcircle of the triangle $DFH$.

2013 National Olympiad First Round, 7

Tags:
What is the sum of real roots of the equation $x^4-8x^3+13x^2 -24x + 9 = 0$? $ \textbf{(A)}\ 8 \qquad\textbf{(B)}\ 7 \qquad\textbf{(C)}\ 6 \qquad\textbf{(D)}\ 5 \qquad\textbf{(E)}\ 4 $

2016 Iran MO (3rd Round), 3

Let $m$ be a positive integer. The positive integer $a$ is called a [i]golden residue[/i] modulo $m$ if $\gcd(a,m)=1$ and $x^x \equiv a \pmod m$ has a solution for $x$. Given a positive integer $n$, suppose that $a$ is a golden residue modulo $n^n$. Show that $a$ is also a golden residue modulo $n^{n^n}$. [i]Proposed by Mahyar Sefidgaran[/i]

1997 Tournament Of Towns, (565) 6

Lines parallel to the sides of an equilateral triangle are drawn so that they cut each of the sides into n equal segments and the triangle into n congruent triangles. Each of these n triangles is called a “cell”. Also lines parallel to each of the sides of the original triangle are drawn through each of the vertices of the original triangle. The cells between any two adjacent parallel lines form a “stripe”. (a) If $n =10$, what is the maximum number of cells that can be chosen so that no two chosen cells belong to one stripe? (b)The same question for $n = 9$. (R Zhenodarov)

1962 German National Olympiad, 5

Given a plane $P$ and two fixed points $A$ and $B$ that do not lie in this plane. Denote two points $A'$ and $B'$ on plane $P$ and $M ,N$ the midpoints of the segments $AA'$, $BB'$. a) Determine the locus of the midpoint of the segment MN if the points are $A'$ and $B'$ move arbitrarily in plane $P$. b) A circle $O$ is considered in the plane $P$. Determine the locus $L$ of the midpoint of the segment $MN$ if the points $A'$ and $B'$ lie on the circle $O$ or inside it . c) $A'$ is assumed to be fixed on the circle $O$ or inside it and $B'$ is assumed to be movable inside it , except for $O$. Determine the locus of the point $B'$ such the above certain locus $L$ remains the same . Note: For b) and c) the following cases should be considered: 1. $A'$ and $B'$ are different, 2. $A'$ and $B'$ coincide.

1996 IMO Shortlist, 9

Let the sequence $ a(n), n \equal{} 1,2,3, \ldots$ be generated as follows with $ a(1) \equal{} 0,$ and for $ n > 1:$ \[ a(n) \equal{} a\left( \left \lfloor \frac{n}{2} \right \rfloor \right) \plus{} (\minus{}1)^{\frac{n(n\plus{}1)}{2}}.\] 1.) Determine the maximum and minimum value of $ a(n)$ over $ n \leq 1996$ and find all $ n \leq 1996$ for which these extreme values are attained. 2.) How many terms $ a(n), n \leq 1996,$ are equal to 0?

PEN E Problems, 21

Tags:
Prove that if $p$ is a prime, then $p^{p}-1$ has a prime factor that is congruent to $1$ modulo $p$.

1999 Mongolian Mathematical Olympiad, Problem 5

Let $A_1,\ldots,A_m$ be three-element subsets of an $n$-element set $X$ such that $|A_i\cup A_j|\le1$ whenever $i\ne j$. Prove that there exists a subset $A$ of $X$ with $|A|\ge2\sqrt n$ such that it does not contain any of the $A_i$.

2004 National High School Mathematics League, 14

Three points $A\left(0,\frac{4}{3}\right),B(-1,0),C(1,0)$ are given. The distance from $P$ to line $BC$ is the geometric mean of that from $P$ to lines $AB$ and $AC$. [b](a)[/b] Find the path equation of point $P$. [b](b)[/b] If line $L$ passes $D$ ($D$ is the incenter of $\triangle ABC$ ), and it has three common points with the path of $P$, find the range value of slope $k$ of line $L$.

2017 Dutch BxMO TST, 4

A quadruple $(a; b; c; d)$ of positive integers with $a \leq b \leq c \leq d$ is called good if we can colour each integer red, blue, green or purple, in such a way that $i$ of each $a$ consecutive integers at least one is coloured red; $ii$ of each $b$ consecutive integers at least one is coloured blue; $iii$ of each $c$ consecutive integers at least one is coloured green; $iiii$ of each $d$ consecutive integers at least one is coloured purple. Determine all good quadruples with $a = 2.$

2018 CCA Math Bonanza, L2.2

Tags:
Points $X,Y,Z$ lie on a line in this order and point $P$ lies off this line such that $\angle{XPY}=\angle{PZY}$. If $XY=4$ and $YZ=5$, compute $PX$. [i]2018 CCA Math Bonanza Lightning Round #2.2[/i]

2016 India Regional Mathematical Olympiad, 3

Tags: geometry
Two circles $C_1$ and $C_2$ intersect each other at points $A$ and $B$. Their external common tangent (closer to $B$) touches $C_1$ at $P$ and $C_2$ at $Q$. Let $C$ be the reflection of $B$ in line $PQ$. Prove that $\angle CAP=\angle BAQ$.

2017 NIMO Problems, 6

Tags:
Suppose $a$, $b$, and $c$ are positive integers such that \[\dfrac ab+\dfrac bc+\dfrac ca-\dfrac{524}{abc}=\dfrac ba+\dfrac cb+\dfrac ac - \dfrac{518}{abc}=1.\] Find $a^2+b^2+c^2$. [i]Proposed by David Altizio[/i]

2023 Mexico National Olympiad, 3

Tags: geometry
Let $ABCD$ be a convex quadrilateral. If $M, N, K$ are the midpoints of the segments $AB, BC$, and $CD$, respectively, and there is also a point $P$ inside the quadrilateral $ABCD$ such that, $\angle BPN= \angle PAD$ and $\angle CPN=\angle PDA$. Show that $AB \cdot CD=4PM\cdot PK$.

2014 Sharygin Geometry Olympiad, 23

Let $A, B, C$ and $D$ be a triharmonic quadruple of points, i.e $AB\cdot CD = AC \cdot BD = AD \cdot BC.$ Let $A_1$ be a point distinct from $A$ such that the quadruple $A_1, B, C$ and $D$ is triharmonic. Points $B_1, C_1$ and $D_1$ are defined similarly. Prove that a) $A, B, C_1, D_1$ are concyclic; b) the quadruple $A_1, B_1, C_1, D_1$ is triharmonic.

2006 Romania National Olympiad, 4

$\displaystyle 2n$ students $\displaystyle (n \geq 5)$ participated at table tennis contest, which took $\displaystyle 4$ days. In every day, every student played a match. (It is possible that the same pair meets twice or more times, in different days) Prove that it is possible that the contest ends like this: - there is only one winner; - there are $\displaystyle 3$ students on the second place; - no student lost all $\displaystyle 4$ matches. How many students won only a single match and how many won exactly $\displaystyle 2$ matches? (In the above conditions)

2009 Indonesia TST, 1

Let $ n \ge 1$ and $ k \ge 3$ be integers. A circle is divided into $ n$ sectors $ a_1,a_2,\dots,a_n$. We will color the $ n$ sectors with $ k$ different colors such that $ a_i$ and $ a_{i \plus{} 1}$ have different color for each $ i \equal{} 1,2,\dots,n$ where $ a_{n \plus{} 1}\equal{}a_1$. Find the number of ways to do such coloring.

2015 Sharygin Geometry Olympiad, P18

Let $ABCDEF$ be a cyclic hexagon, points $K, L, M, N$ be the common points of lines $AB$ and $CD$, $AC$ and $BD$, $AF$ and $DE$, $AE$ and $DF$ respectively. Prove that if three of these points are collinear then the fourth point lies on the same line.

2016 Korea USCM, 4

Suppose a continuous function $f:[-\frac{\pi}{4},\frac{\pi}{4}]\to[-1,1]$ and differentiable on $(-\frac{\pi}{4},\frac{\pi}{4})$. Then, there exists a point $x_0\in (-\frac{\pi}{4},\frac{\pi}{4})$ such that $$|f'(x_0)|\leq 1+f(x_0)^2$$

2007 Balkan MO Shortlist, A5

Tags: function , algebra
find all the function $f,g:R\rightarrow R$ such that (1)for every $x,y\in R$ we have $f(xg(y+1))+y=xf(y)+f(x+g(y))$ (2)$f(0)+g(0)=0$

1987 Bulgaria National Olympiad, Problem 3

Let $MABCD$ be a pyramid with the square $ABCD$ as the base, in which $MA=MD$, $MA^2+AB^2=MB^2$ and the area of $\triangle ADM$ is equal to $1$. Determine the radius of the largest ball that is contained in the given pyramid.

2023 Vietnam Team Selection Test, 2

Tags: algebra
Given three functions $$P(x) = (x^2-1)^{2023}, Q(x) = (2x+1)^{14}, R(x) = \left(2x+1+\frac 2x \right)^{34}.$$ Initially, we pick a set $S$ containing two of these functions, and we perform some [i]operations[/i] on it. Allowed operations include: - We can take two functions $p,q \in S$ and add one of $p+q, p-q$, or $pq$ to $S$. - We can take a function $p \in S$ and add $p^k$ to $S$ for $k$ is an arbitrary positive integer of our choice. - We can take a function $p \in S$ and choose a real number $t$, and add to $S$ one of the function $p+t, p-t, pt$. Show that no matter how we pick $S$ in the beginning, there is no way we can perform finitely many operations on $S$ that would eventually yield the third function not in $S$.

2013 Argentina Cono Sur TST, 4

Show that the number $\begin{matrix} \\ N= \end{matrix} \underbrace{44 \ldots 4}_{n} \underbrace{88 \ldots 8}_{n} - 1\underbrace{33 \ldots3 }_{n-1}2$ is a perfect square for all positive integers $n$.