This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2018 Miklós Schweitzer, 1

Tags: countability
Let $S\subset \mathbb{R}$ be a closed set and $f:\mathbb{R}^{2n}\to \mathbb{R}$ be a continuous function. Define a graph $G$ as follows: Let $x$ be a vertex of $G$ iff $x\in \mathbb{R}^{n}$ and $f(x,x)\not\in S$, then connect the vertices $x$ and $y$ by an edge in $G$ iff $f(x,y)\in S$ or $f(y,x)\in S$. Show that the chromatic number of $G$ is countable.

2024 South Africa National Olympiad, 1

A cube of side length $n$ is made up of $n^3$ smaller unit cubes. Some of the six faces of the large cube are fully painted. When the large cube is taken apart, 245 smaller cubes do not have any paint on them. Determine the value(s) of $n$ and how many faces of the large cube were painted.

Novosibirsk Oral Geo Oly VII, 2021.1

Cut the $9 \times 10$ grid rectangle along the grid lines into several squares so that there are exactly two of them with odd sidelengths.

2008 Austria Beginners' Competition, 4

Let $ABC$ be an acute-angled triangle with the property that the bisector of $\angle BAC$, the altitude through $B$ and the perpendicular bisector of $AB$ intersect in one point. Determine the angle $\alpha = \angle BAC$.

2022 Austrian MO Regional Competition, 3

Let $ABC$ denote a triangle with $AC\ne BC$. Let $I$ and $U$ denote the incenter and circumcenter of the triangle $ABC$, respectively. The incircle touches $BC$ and $AC$ in the points $D$ and E, respectively. The circumcircles of the triangles $ABC$ and $CDE$ intersect in the two points $C$ and $P$. Prove that the common point $S$ of the lines $CU$ and $P I$ lies on the circumcircle of the triangle $ABC$. [i](Karl Czakler)[/i]

PEN J Problems, 13

Determine all positive integers $k$ such that \[\frac{d(n^{2})}{d(n)}= k\] for some $n \in \mathbb{N}$.

2020 Thailand TSTST, 5

Let $\{a_n\}$ be a sequence of positive integers such that $a_{n+1} = a_n^2+1$ for all $n \geq 1$. Prove that there is no positive integer $N$ such that $$\prod_{k=1}^N(a_k^2+a_k+1)$$ is a perfect square.

2022 Olimphíada, 1

Let $n$ and $p$ be positive integers, with $p>3$ prime, such that: i) $n\mid p-3;$ ii) $p\mid (n+1)^3-1.$ Show that $pn+1$ is the cube of an integer.

2023 USAJMO, 2

Tags: geometry
In an acute triangle $ABC$, let $M$ be the midpoint of $\overline{BC}$. Let $P$ be the foot of the perpendicular from $C$ to $AM$. Suppose that the circumcircle of triangle $ABP$ intersects line $BC$ at two distinct points $B$ and $Q$. Let $N$ be the midpoint of $\overline{AQ}$. Prove that $NB=NC$. [i]Proposed by Holden Mui[/i]

2021 Czech and Slovak Olympiad III A, 4

Find all natural numbers $n$ for which equality holds $n + d (n) + d (d (n)) +... = 2021$, where $d (0) = d (1) = 0$ and for $k> 1$, $ d (k)$ is the [i]superdivisor [/i] of the number $k$ (i.e. its largest divisor of $d$ with property $d <k$). (Tomáš Bárta)

Ukrainian TYM Qualifying - geometry, I.7

Given a natural number $n> 3$. On the plane are considered convex $n$ - gons $F_1$ and $F_2$ such that on each side of $F_1$ lies one vertex of $F_2$ and no two vertices $F_1$ and $F_2$ coincide. For each $n$, determine the limits of the ratio of the areas of the polygons $F_1$ and $F_2$. For each $n$, determine the range of the areas of the polygons $F_1$ and $F_2$, if $F_1$ is a regular $n$-gon. Determine the set of values of this value for other partial cases of the polygon $F_1$.

2023 Romania Team Selection Test, P4

Consider a $4\times 4$ array of pairwise distinct positive integers such that on each column, respectively row, one of the numbers is equal to the sum of the other three. Determine the least possible value of the largest number such an array may contain. [i]The Problem Selection Committee[/i]

Russian TST 2019, P2

Numbers $m$ and $n$ are given positive integers. There are $mn$ people in a party, standing in the shape of an $m\times n$ grid. Some of these people are police officers and the rest are the guests. Some of the guests may be criminals. The goal is to determine whether there is a criminal between the guests or not.\\ Two people are considered \textit{adjacent} if they have a common side. Any police officer can see their adjacent people and for every one of them, know that they're criminal or not. On the other hand, any criminal will threaten exactly one of their adjacent people (which is likely an officer!) to murder. A threatened officer will be too scared, that they deny the existence of any criminal between their adjacent people.\\ Find the least possible number of officers such that they can take position in the party, in a way that the goal is achievable. (Note that the number of criminals is unknown and it is possible to have zero criminals.) [i]Proposed by Abolfazl Asadi[/i]

1968 Leningrad Math Olympiad, grade 6

[b]6.1[/b] The student bought a briefcase, a fountain pen and a book. If the briefcase cost 5 times cheaper, the fountain pen was 2 times cheaper, and the book was 2 1/2 times cheaper cheaper, then the entire purchase would cost 2 rubles. If the briefcase was worth 2 times cheaper, a fountain pen is 4 times cheaper, and a book is 3 times cheaper, then the whole the purchase would cost 3 rubles. How much does it really cost? ´ [b]6.2.[/b] Which number is greater: $$\underbrace{888...88}_{19 \, digits} \cdot \underbrace{333...33}_{68 \, digits} \,\,\, or \,\,\, \underbrace{444...44}_{19 \, digits} \cdot \underbrace{666...67}_{68 \, digits} \, ?$$ [b]6.3[/b] Distance between Luga and Volkhov 194 km, between Volkhov and Lodeynoye Pole 116 km, between Lodeynoye Pole and Pskov 451 km, between Pskov and Luga 141 km. What is the distance between Pskov and Volkhov? [b]6.4 [/b] There are $4$ objects in pairs of different weights. How to use a pan scale without weights Using five weighings, arrange all these objects in order of increasing weights? [b]6.5 [/b]. Several teams took part in the volleyball tournament. Team A is considered stronger than team B if either A beat B or there is a team C such that A beat C, and C beat B. Prove that if team T is the winner of the tournament, then it is the strongest the rest of the teams. [b]6.6 [/b] In task 6.1, determine what is more expensive: a briefcase or a fountain pen. PS. You should use hide for answers.Collected [url=https://artofproblemsolving.com/community/c3988084_1968_leningrad_math_olympiad]here[/url].

2018 Purple Comet Problems, 29

Find the three-digit positive integer $n$ for which $\binom n3 \binom n4 \binom n5 \binom n6 $ is a perfect square.

2024 Middle European Mathematical Olympiad, 1

Let $\mathbb{N}_0$ denote the set of non-negative integers. Determine all non-negative integers $k$ for which there exists a function $f: \mathbb{N}_0 \to \mathbb{N}_0$ such that $f(2024) = k$ and $f(f(n)) \leq f(n+1) - f(n)$ for all non-negative integers $n$.

2005 IMAR Test, 1

Let $a,b,c$ be positive real numbers such that $abc\geq 1$. Prove that \[ \frac{1}{1+b+c}+\frac{1}{1+c+a}+\frac{1}{1+a+b}\leq 1. \] [hide="Remark"]This problem derives from the well known inequality given in [url=http://www.mathlinks.ro/Forum/viewtopic.php?p=185470#p185470]USAMO 1997, Problem 5[/url]. [/hide]

2013 Serbia National Math Olympiad, 2

For a natural number $n$, set $S_n$ is defined as: \[S_n = \left \{ {n\choose n}, {2n \choose n}, {3n\choose n},..., {n^2 \choose n} \right \}.\] a) Prove that there are infinitely many composite numbers $n$, such that the set $S_n$ is not complete residue system mod $n$; b) Prove that there are infinitely many composite numbers $n$, such that the set $S_n$ is complete residue system mod $n$.

2012 Czech And Slovak Olympiad IIIA, 6

In the set of real numbers solve the system of equations $x^4+y^2+4=5yz$ $y^4+z^2+4=5zx$ $z^4+x^2+4=5xy$

2015 NZMOC Camp Selection Problems, 3

Let $ABC$ be an acute angled triangle. The arc between $A$ and $B$ of the circumcircle of $ABC$ is reflected through the line $AB$, and the arc between $A$ and $C$ of the circumcircle of $ABC$ is reflected over the line $AC$. Obviously these two reflected arcs intersect at the point $A$. Prove that they also intersect at another point inside the triangle $ABC$.

2018 Thailand TST, 1

Tags: inequalities
Let $x, y, z$ be positive reals such that $xyz = 1$. Prove that $$\sum_{cyc} \frac{1}{\sqrt{x+2y+6}}\leq\sum_{cyc} \frac{x}{\sqrt{x^2+4\sqrt{y}+4\sqrt{z}}}.$$

2001 China Team Selection Test, 3

Let $X$ be a finite set of real numbers. For any $x,x' \in X$ with $x<x'$, define a function $f(x,x')$, then $f$ is called an ordered pair function on $X$. For any given ordered pair function $f$ on $X$, if there exist elements $x_1 <x_2 <\cdots<x_k$ in $X$ such that $f(x_1 ,x_2 ) \le f(x_2 ,x_3 ) \le \cdots \le f(x_{k-1} ,x_k )$, then $x_1 ,x_2 ,\cdots,x_k$ is called an $f$-ascending sequence of length $k$ in $X$. Similarly, define an $f$-descending sequence of length $l$ in $X$. For integers $k,l \ge 3$, let $h(k,l)$ denote the smallest positive integer such that for any set $X$ of $s$ real numbers and any ordered pair function $f$ on $X$, there either exists an $f$-ascending sequence of length $k$ in $X$ or an $f$-descending sequence of length $l$ in $X$ if $s \ge h(k,l)$. Prove: 1.For $k,l>3,h(k,l) \le h(k-1,l)+h(k,l-1)-1$; 2.$h(k,l) \le \binom{l-2}{k+l-4} +1$.

2003 Czech And Slovak Olympiad III A, 1

Solve the following system in the set of real numbers: $x^2 -xy+y^2 = 7$, $x^2y+xy^2 = -2$.

2019 Caucasus Mathematical Olympiad, 1

In the kindergarten there is a big box with balls of three colors: red, blue and green, 100 balls in total. Once Pasha took out of the box 30 red, 10 blue, and 20 green balls and played with them. Then he lost five balls and returned the others back into the box. The next day, Sasha took out of the box 8 red, 18 blue, and 48 green balls. Is it possible to determine the color of at least one lost ball?

1982 Tournament Of Towns, (028) 2

Does there exist a polyhedron (not necessarily convex) which could have the following complete list of edges? $AB, AC, BC, BD, CD, DE, EF, EG, FG, FH, GH, AH$. [img]http://1.bp.blogspot.com/-wTdNfQHG5RU/XVk1Bf4wpqI/AAAAAAAAKhA/8kc6u9KqOgg_p1CXim2LZ1ANFXFiWgnYACK4BGAYYCw/s1600/TOT%2B1982%2BAutum%2BS2.png[/img]