This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2003 JHMMC 8, 32

Tags:
Let $N$ be the product of the first nine multiples of $19$ (i.e. $N = 19\times38 \times57\times\cdots\times 152\times 171$). What is the last digit of $N$?

2024 AMC 10, 5

Tags: factorial
What is the least value of $n$ such that $n!$ is a multiple of $2024$? $ \textbf{(A) }11 \qquad \textbf{(B) }21 \qquad \textbf{(C) }22 \qquad \textbf{(D) }23 \qquad \textbf{(E) }253 \qquad $

2009 China Team Selection Test, 1

Tags: geometry
In convex pentagon $ ABCDE$, denote by $ AD\cap BE = F,BE\cap CA = G,CA\cap DB = H,DB\cap EC = I,EC\cap AD = J; AI\cap BE = A',BJ%Error. "capCA" is a bad command. = B',CF%Error. "capDB" is a bad command. = C',DG\cap EC = D',EH\cap AD = E'.$ Prove that $ \frac {AB'}{B'C}\cdot\frac {CD'}{D'E}\cdot\frac {EA'}{A'B}\cdot\frac {BC'}{C'D}\cdot\frac {DE'}{E'A} = 1$.

2014 JHMMC 7 Contest, 1

1. What is the probability that a randomly chosen word of this sentence has exactly four letters?

2022 AMC 12/AHSME, 12

Tags: probability , dice
Kayla rolls four fair $6$-sided dice. What is the probability that at least one of the numbers Kayla rolls is greater than $4$ and at least two of the numbers she rolls are greater than $2$? $\textbf{(A)}\frac{2}{3}~\textbf{(B)}\frac{19}{27}~\textbf{(C)}\frac{59}{81}~\textbf{(D)}\frac{61}{81}~\textbf{(E)}\frac{7}{9}$

2015 China Team Selection Test, 1

Tags: inequalities
Let $x_1,x_2,\cdots,x_n$ $(n\geq2)$ be a non-decreasing monotonous sequence of positive numbers such that $x_1,\frac{x_2}{2},\cdots,\frac{x_n}{n}$ is a non-increasing monotonous sequence .Prove that \[ \frac{\sum_{i=1}^{n} x_i }{n\left (\prod_{i=1}^{n}x_i \right )^{\frac{1}{n}}}\le \frac{n+1}{2\sqrt[n]{n!}}\]

2000 Mongolian Mathematical Olympiad, Problem 1

Find all integers that can be written in the form $\frac{(x+y+z)^2}{xyz}$, where $x,y,z$ are positive integers.

2012 India PRMO, 3

For how many pairs of positive integers $(x,y)$ is $x+3y=100$?

1999 Moldova Team Selection Test, 5

Tags: equation
Let $a_1, a_2, \ldots, a_n$ be real numbers, but not all of them null. Show that the equation $$\sqrt{x+a_1}+\sqrt{x+a_2}+\ldots+\sqrt{x+a_n}=n\sqrt{x}$$ has at most one real solution.

Indonesia Regional MO OSP SMA - geometry, 2004.2

Tags: geometry , ratio , cevian
Triangle $ABC$ is given. The points $D, E$, and $F$ are located on the sides $BC, CA$ and $AB$ respectively so that the lines $AD, BE$ and $CF$ intersect at point $O$. Prove that $\frac{AO}{AD} + \frac{BO}{BE} + \frac{CO}{ CF}=2$

2022 Iran Team Selection Test, 9

consider $n\geq 6$ points $x_1,x_2,\dots,x_n$ on the plane such that no three of them are colinear. We call graph with vertices $x_1,x_2,\dots,x_n$ a "road network" if it is connected, each edge is a line segment, and no two edges intersect each other at points other than the vertices. Prove that there are three road networks $G_1,G_2,G_3$ such that $G_i$ and $G_j$ don't have a common edge for $1\leq i,j\leq 3$. Proposed by Morteza Saghafian

2003 China Team Selection Test, 2

In triangle $ABC$, the medians and bisectors corresponding to sides $BC$, $CA$, $AB$ are $m_a$, $m_b$, $m_c$ and $w_a$, $w_b$, $w_c$ respectively. $P=w_a \cap m_b$, $Q=w_b \cap m_c$, $R=w_c \cap m_a$. Denote the areas of triangle $ABC$ and $PQR$ by $F_1$ and $F_2$ respectively. Find the least positive constant $m$ such that $\frac{F_1}{F_2}<m$ holds for any $\triangle{ABC}$.

2021 Purple Comet Problems, 23

The sum $$\sum_{k=3}^{\infty} \frac{1}{k(k^4-5k^2+4)^2}$$ is equal to $\frac{m^2}{2n^2}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

2018 AMC 10, 17

In rectangle $PQRS$, $PQ=8$ and $QR=6$. Points $A$ and $B$ lie on $\overline{PQ}$, points $C$ and $D$ lie on $\overline{QR}$, points $E$ and $F$ lie on $\overline{RS}$, and points $G$ and $H$ lie on $\overline{SP}$ so that $AP=BQ<4$ and the convex octagon $ABCDEFGH$ is equilateral. The length of a side of this octagon can be expressed in the form $k+m\sqrt{n}$, where $k$, $m$, and $n$ are integers and $n$ is not divisible by the square of any prime. What is $k+m+n$? $\textbf{(A) } 1 \qquad \textbf{(B) } 7 \qquad \textbf{(C) } 21 \qquad \textbf{(D) } 92 \qquad \textbf{(E) } 106$

2007 China Second Round Olympiad, 3

For positive integers $k,m$, where $1\le k\le 5$, define the function $f(m,k)$ as \[f(m,k)=\sum_{i=1}^{5}\left[m\sqrt{\frac{k+1}{i+1}}\right]\] where $[x]$ denotes the greatest integer not exceeding $x$. Prove that for any positive integer $n$, there exist positive integers $k,m$, where $1\le k\le 5$, such that $f(m,k)=n$.

2007 iTest Tournament of Champions, 2

Tags:
Let \[S = 1 + \frac 18 + \frac{1\cdot 5}{8\cdot 16} + \frac{1\cdot 5\cdot 9}{8\cdot 16\cdot 24} + \cdots + \frac{1\cdot 5\cdot 9\cdots (4k+1)}{8\cdot 16\cdot 24\cdots(8k+8)} + \cdots.\] Find the positive integer $n$ such that $2^n < S^{2007} < 2^{n+1}$.

2016 India IMO Training Camp, 2

Tags: geometry
Let $ABC$ be an acute triangle and let $M$ be the midpoint of $AC$. A circle $\omega$ passing through $B$ and $M$ meets the sides $AB$ and $BC$ at points $P$ and $Q$ respectively. Let $T$ be the point such that $BPTQ$ is a parallelogram. Suppose that $T$ lies on the circumcircle of $ABC$. Determine all possible values of $\frac{BT}{BM}$.

2013 NIMO Problems, 4

The infinite geometric series of positive reals $a_1, a_2, \dots$ satisfies \[ 1 = \sum_{n=1}^\infty a_n = -\frac{1}{2013} + \sum_{n=1}^{\infty} \text{GM}(a_1, a_2, \dots, a_n) = \frac{1}{N} + a_1 \] where $\text{GM}(x_1, x_2, \dots, x_k) = \sqrt[k]{x_1x_2\cdots x_k}$ denotes the geometric mean. Compute $N$. [i]Proposed by Aaron Lin[/i]

2018 Kyiv Mathematical Festival, 3

A circle is divided by $2018$ points into equal parts. Two players delete these points in turns. A player loses, if after his turn it is possible to draw a diameter of the circle such that there are no undeleted points on one side of it. Which player has a winning strategy?

2020 Ukrainian Geometry Olympiad - April, 3

Triangle $ABC$. Let $B_1$ and $C_1$ be such points, that $AB= BB_1, AC=CC_1$ and $B_1, C_1$ lie on the circumscribed circle $\Gamma$ of $\vartriangle ABC$. Perpendiculars drawn from from points $B_1$ and $C_1$ on the lines $AB$ and $AC$ intersect $\Gamma$ at points $B_2$ and $C_2$ respectively, these points lie on smaller arcs $AB$ and $AC$ of circle $\Gamma$ respectively, Prove that $BB_2 \parallel CC_2$.

2003 IMO Shortlist, 3

Determine all pairs of positive integers $(a,b)$ such that \[ \dfrac{a^2}{2ab^2-b^3+1} \] is a positive integer.

2016 IFYM, Sozopol, 1

There are $2^{2n+1}$ towns with $2n+1$ companies and each two towns are connected with airlines from one of the companies. What’s the greatest number $k$ with the following property: We can close $k$ of the companies and their airlines in such way that we can still reach each town from any other (connected graph).

1991 Denmark MO - Mohr Contest, 3

A right-angled triangle has perimeter $60$ and the altitude of the hypotenuse has a length $12$. Determine the lengths of the sides.

2006 Moldova MO 11-12, 7

Tags: geometry
Let $n\in\mathbb{N}^*$. $2n+3$ points on the plane are given so that no 3 lie on a line and no 4 lie on a circle. Is it possible to find 3 points so that the interior of the circle passing through them would contain exactly $n$ of the remaining points.

1991 Austrian-Polish Competition, 7

Tags: function , algebra , max
For a given positive integer $n$ determine the maximum value of the function $f (x) = \frac{x + x^2 +...+ x^{2n-1}}{(1 + x^n)^2}$ over all $x \ge 0$ and find all positive $x$ for which the maximum is attained.