This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2023 Math Prize for Girls Problems, 1

Tags:
The frame of a painting has the form of a $105^{\prime\prime}$ by $105^{\prime\prime}$ square with a $95^{\prime\prime}$ by $95^{\prime\prime}$ square removed from its center. The frame is built out of congruent isosceles trapezoids with angles measuring $45^\circ$ and $135^\circ$. Each trapezoid has one base on the frame's outer edge and one base on the frame's inner edge. Each outer edge of the frame contains an odd number of trapezoid bases that alternate long, short, long, short, etc. What is the maximum possible number of trapezoids in the frame?

2024 IFYM, Sozopol, 6

Each of 9 girls participates in several (one or more) theater groups, so that there are no two identical groups. Each of them is randomly assigned a positive integer between 1 and 30 inclusive. We call a group \textit{small} if the sum of the numbers of its members does not exceed the sum of any other group. Prove that regardless of which girl participates in which group, the probability that after receiving the numbers there will be a unique small group is at least \( \frac{7}{10} \).

2008 Princeton University Math Competition, A8/B9

A SET cards have four characteristics: number, color, shape, and shading, each of which has $3$ values. A SET deck has $81$ cards, one for each combination of these values. A SET is three cards such that, for each characteristic, the values of the three cards for that characteristics are either all the same or all different. In how many ways can you replace each SET card in the deck with another SET card (possibly the same), with no card used twice, such that any three cards that were a SET before are still a SET? (Alternately, a SET card is an ordered $4$-tuple of $0$s, $1$s, and $2$s, and three cards form a SET if their sum is ($0, 0, 0, 0$) mod $3$, for instance, ($0, 1, 2, 2$), ($1, 0, 2, 1$), and ($2, 2, 2, 0$) form a SET. How many permutations of the SET cards maintain SET-ness?)

1999 Belarusian National Olympiad, 5

Tags: inequalities
Determine the maximal value of $ k $, such that for positive reals $ a,b $ and $ c $ from inequality $ kabc >a^3+b^3+c^3 $ it follows that $ a,b $ and $ c $ are sides of a triangle.

2006 Romania National Olympiad, 3

In the acute-angle triangle $ABC$ we have $\angle ACB = 45^\circ$. The points $A_1$ and $B_1$ are the feet of the altitudes from $A$ and $B$, and $H$ is the orthocenter of the triangle. We consider the points $D$ and $E$ on the segments $AA_1$ and $BC$ such that $A_1D = A_1E = A_1B_1$. Prove that a) $A_1B_1 = \sqrt{ \frac{A_1B^2+A_1C^2}{2} }$; b) $CH=DE$.

2013 Puerto Rico Team Selection Test, 5

Tags: geometry
Given an equilateral triangle we select an arbitrary point on its interior. We draw theperpendiculars from that point to the three sides of the triangle. Show that the sum of the lengths of these perpendiculars is equal to the height of the triangle.

1965 All Russian Mathematical Olympiad, 069

Tags: algebra
A spy airplane flies on the circle with the centre $A$ and radius $10$ km. Its speed is $1000$ km/h. At a certain moment, a rocket , that has same speed with the airplane, is launched from point $A$ and moves along on the straight line connecting the airplane and point $A$.How long after launch will the rocket hit the plane?

LMT Guts Rounds, 2019 F

[u]Round 1[/u] [b]p1.[/b] A positive integer is said to be transcendent if it leaves a remainder of $1$ when divided by $2$. Find the $1010$th smallest positive integer that is transcendent. [b]p2.[/b] The two diagonals of a square are drawn, forming four triangles. Determine, in degrees, the sum of the interior angle measures in all four triangles. [b]p3.[/b] Janabel multiplied $2$ two-digit numbers together and the result was a four digit number. If the thousands digit was nine and hundreds digit was seven, what was the tens digit? [u]Round 2[/u] [b]p4.[/b] Two friends, Arthur and Brandon, are comparing their ages. Arthur notes that $10$ years ago, his age was a third of Brandon’s current age. Brandon points out that in $12$ years, his age will be double of Arthur’s current age. How old is Arthur now? [b]p5.[/b] A farmer makes the observation that gathering his chickens into groups of $2$ leaves $1$ chicken left over, groups of $3$ leaves $2$ chickens left over, and groups of $5$ leaves $4$ chickens left over. Find the smallest possible number of chickens that the farmer could have. [b]p6.[/b] Charles has a bookshelf with $3$ layers and $10$ indistinguishable books to arrange. If each layer must hold less books than the layer below it and a layer cannot be empty, how many ways are there for Charles to arrange his $10$ books? [u]Round 3[/u] [b]p7.[/b] Determine the number of factors of $2^{2019}$. [b]p8.[/b] The points $A$, $B$, $C$, and $D$ lie along a line in that order. It is given that $\overline{AB} : \overline{CD} = 1 : 7$ and $\overline{AC} : \overline{BD} = 2 : 5$. If $BC = 3$, find $AD$. [b]p9.[/b] A positive integer $n$ is equal to one-third the sum of the first $n$ positive integers. Find $n$. [u]Round 4[/u] [b]p10.[/b] Let the numbers $a,b,c$, and $d$ be in arithmetic progression. If $a +2b +3c +4d = 5$ and $a =\frac12$ , find $a +b +c +d$. [b]p11.[/b] Ten people playing brawl stars are split into five duos of $2$. Determine the probability that Jeff and Ephramare paired up. [b]p12.[/b] Define a sequence recursively by $F_0 = 0$, $F_1 = 1$, and for all $n\ge 2$, $$F_n = \left \lceil \frac{F_{n-1}+F_{n-2}}{2} \right \rceil +1,$$ where $\lceil r \rceil$ denotes the least integer greater than or equal to $r$ . Find $F_{2019}$. PS. You should use hide for answers. Rounds 5-8 have been posted [url=https://artofproblemsolving.com/community/c3h3166019p28809679]here [/url] and 9-12 [url=https://artofproblemsolving.com/community/c3h3166115p28810631]here[/url].Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1962 Leningrad Math Olympiad, 7.5*

The circle is divided into $49$ areas so that no three areas touch at one point. The resulting “map” is colored in three colors so that no two adjacent areas have the same color. The border of two areas is considered to be colored in both colors. Prove that on the circle there are two diametrically opposite points, colored in one color.

1996 Estonia Team Selection Test, 3

Each face of a cube is divided into $n^2$ equal squares. The vertices of the squares are called [i]nodes[/i], so each face has $(n+1)^2$ nodes. $(a)$ If $n=2$,does there exist a closed polygonal line whose links are sids of the squares and which passes through each node exactly once? $(b)$ Prove that, for each $n$, such a polygonal line divides the surface area of the cube into two equal parts

2020 Balkan MO Shortlist, C4

A strategical video game consists of a map of finitely many towns. In each town there are $k$ directions, labelled from $1$ through $k$. One of the towns is designated as initial, and one – as terminal. Starting from the initial town the hero of the game makes a finite sequence of moves. At each move the hero selects a direction from the current town. This determines the next town he visits and a certain positive amount of points he receives. Two strategical video games are equivalent if for every sequence of directions the hero can reach the terminal town from the initial in one game, he can do so in the other game, and, in addition, he accumulates the same amount of points in both games. For his birthday John receives two strategical video games – one with $N$ towns and one with $M$ towns. He claims they are equivalent. Marry is convinced they are not. Marry is right. Prove that she can provide a sequence of at most $N +M$ directions that shows the two games are indeed not equivalent. [i]Stefan Gerdjikov, Bulgaria[/i]

2014 Contests, 3.

For each positive integer $n$, determine the smallest possible value of the polynomial $$ W_n(x)=x^{2n}+2x^{2n-1}+3x^{2n-2}+\ldots + (2n-1)x^2+2nx. $$

1961 AMC 12/AHSME, 6

Tags: logarithm
When simplified, $\log{8} \div \log{\frac{1}{8}}$ becomes: ${{{ \textbf{(A)}\ 6\log{2} \qquad\textbf{(B)}\ \log{2} \qquad\textbf{(C)}\ 1 \qquad\textbf{(D)}\ 0}\qquad\textbf{(E)}\ -1}} $

2011 Miklós Schweitzer, 5

Let n, k be positive integers. Let $f_a(x) := ||x - a||^{2n}$ , where the vectors $x = (x_1, ..., x_k) , a\in R^k$ , and ||·|| is the Euclidean norm. Let the vector space $Q_{n, k}$ be generated by the functions $f_a$ ($a\in R^k$). What is the largest integer N for which $Q_{n, k}$ contains all polynomials of $x_1, ..., x_k$ whose total degree is at most N?

1989 IMO Shortlist, 19

A natural number is written in each square of an $ m \times n$ chess board. The allowed move is to add an integer $ k$ to each of two adjacent numbers in such a way that non-negative numbers are obtained. (Two squares are adjacent if they have a common side.) Find a necessary and sufficient condition for it to be possible for all the numbers to be zero after finitely many operations.

2016 Azerbaijan Junior Mathematical Olympiad, 5

Positive integers $(p,a,b,c)$ called [i]good quadruple[/i] if a) $p $ is odd prime, b) $a,b,c $ are distinct , c) $ab+1,bc+1$ and $ca+1$ are divisible by $p $. Prove that for all good quadruple $p+2\le \frac {a+b+c}{3} $, and show the equality case.

2008 JBMO Shortlist, 7

Determine the minimum value of prime $p> 3$ for which there is no natural number $n> 0$ such that $2^n+3^n\equiv 0\pmod{p} $.

2018 CCA Math Bonanza, L1.1

Tags:
Let $A=1,B=2,\ldots,Z=26$. Compute $BONANZA$, where the result is the product of the numbers represented by each letter. [i]2018 CCA Math Bonanza Lightning Round #1.1[/i]

1998 National Olympiad First Round, 7

Find the minimal value of integer $ n$ that guarantees: Among $ n$ sets, there exits at least three sets such that any of them does not include any other; or there exits at least three sets such that any two of them includes the other. $\textbf{(A)}\ 4 \qquad\textbf{(B)}\ 5 \qquad\textbf{(C)}\ 6 \qquad\textbf{(D)}\ 7 \qquad\textbf{(E)}\ 8$

2018 APMO, 2

Tags: algebra
Let $f(x)$ and $g(x)$ be given by $f(x) = \frac{1}{x} + \frac{1}{x-2} + \frac{1}{x-4} + \cdots + \frac{1}{x-2018}$ $g(x) = \frac{1}{x-1} + \frac{1}{x-3} + \frac{1}{x-5} + \cdots + \frac{1}{x-2017}$. Prove that $|f(x)-g(x)| >2$ for any non-integer real number $x$ satisfying $0 < x < 2018$.

2016 Romanian Master of Mathematics Shortlist, C2

A frog trainer places one frog at each vertex of an equilateral triangle $ABC$ of unit sidelength. The trainer can make one frog jump over another along the line joining the two, so that the total length of the jump is an even multiple of the distance between the two frogs just before the jump. Let $M$ and $N$ be two points on the rays $AB$ and $AC$, respectively, emanating from $A$, such that $AM = AN = \ell$, where $\ell$ is a positive integer. After a fi nite number of jumps, the three frogs all lie in the triangle $AMN$ (inside or on the boundary), and no more jumps are performed. Determine the number of final positions the three frogs may reach in the triangle $AMN$. (During the process, the frogs may leave the triangle $AMN$, only their nal positions are to be in that triangle.)

Oliforum Contest III 2012, 2

Show that for every polynomial $f(x)$ with integer coefficients, there exists a integer $C$ such that the set $\{n \in Z :$ the sum of digits of $f(n)$ is $C\}$ is not finite.

1978 Canada National Olympiad, 6

Tags: algebra
Sketch the graph of $x^3 + xy + y^3 = 3$.

2008 Sharygin Geometry Olympiad, 10

(A.Zaslavsky, 9--10) Quadrilateral $ ABCD$ is circumscribed arounda circle with center $ I$. Prove that the projections of points $ B$ and $ D$ to the lines $ IA$ and $ IC$ lie on a single circle.

1991 All Soviet Union Mathematical Olympiad, 537

Four lines in the plane intersect in six points. Each line is thus divided into two segments and two rays. Is it possible for the eight segments to have lengths $1, 2, 3, ... , 8$? Can the lengths of the eight segments be eight distinct integers?