This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2019 CCA Math Bonanza, L1.3

Tags:
Points $P$ and $Q$ are chosen on diagonal $AC$ of square $ABCD$ such that $AB=AP=CQ=1$. What is the measure of $\angle{PBQ}$ in degrees? [i]2019 CCA Math Bonanza Lightning Round #1.3[/i]

1979 All Soviet Union Mathematical Olympiad, 283

Given $n$ points (in sequence)$ A_1, A_2, ... , A_n$ on a line. All the segments $A_1A_2$, $A_2A_3$,$ ...$, $A_{n-1}A_n$ are shorter than $1$. We need to mark $(k-1)$ points so that the difference of every two segments, with the ends in the marked points, is shorter than $1$. Prove that it is possible a) for $k=3$, b) for every $k$ less than $(n-1)$.

1949-56 Chisinau City MO, 1

Tags: algebra
The numbers $1, 2, ..., 1000$ are written out in a row along a circle. Starting from the first, every fifteenth number in the circle is crossed out $(1, 16, 31, ...)$, in this case, the crossed out numbers are still taken into account at each new round of the circle. How many numbers are left uncrossed?

1996 Baltic Way, 11

Real numbers $x_1,x_2,\ldots ,x_{1996}$ have the following property: For any polynomial $W$ of degree $2$ at least three of the numbers $W(x_1),W(x_2),\ldots ,W(x_{1996})$ are equal. Prove that at least three of the numbers $x_1,x_2,\ldots ,x_{1996}$ are equal.

2023 Sharygin Geometry Olympiad, 10.6

Tags: geometry
Let $E$ be the projection of the vertex $C$ of a rectangle $ABCD$ to the diagonal $BD$. Prove that the common external tangents to the circles $AEB$ and $AED$ meet on the circle $AEC$.

2011 Greece National Olympiad, 3

Tags: inequalities
Let $a,b,c$ be positive real numbers with sum $6$. Find the maximum value of \[S = \sqrt[3]{{{a^2} + 2bc}} + \sqrt[3]{{{b^2} + 2ca}} + \sqrt[3]{{{c^2} + 2ab}}.\]

2018 Serbia Team Selection Test, 6

For any positive integer $n$, define $$c_n=\min_{(z_1,z_2,...,z_n)\in\{-1,1\}^n} |z_1\cdot 1^{2018} + z_2\cdot 2^{2018} + ... + z_n\cdot n^{2018}|.$$ Is the sequence $(c_n)_{n\in\mathbb{Z}^+}$ bounded?

2000 Miklós Schweitzer, 4

Tags: analysis
Let $a_1<a_2<a_3$ be positive integers. Prove that there are integers $x_1,x_2,x_3$ such that $\sum_{i=1}^3 |x_i | >0$, $\sum_{i=1}^3 a_ix_i= 0$ and $$\max_{1\le i\le 3} | x_i|<\frac{2}{\sqrt{3}}\sqrt{a_3}+1$$.

2015 China Team Selection Test, 4

Prove that : For each integer $n \ge 3$, there exists the positive integers $a_1<a_2< \cdots <a_n$ , such that for $ i=1,2,\cdots,n-2 $ , With $a_{i},a_{i+1},a_{i+2}$ may be formed as a triangle side length , and the area of the triangle is a positive integer.

1910 Eotvos Mathematical Competition, 2

Let $a, b, c, d$ and $u$ be integers such that each of the numbers $$ac\ \ , \ \ bc + ad \ \ , \ \ bd$$ is a multiple of $u$. Show that $bc$ and $ad$ are multiples of $u$.

2017 Romania National Olympiad, 4

Find all prime numbers with $n \ge 3$ digits, having the property: for every $k \in \{1, 2, . . . , n -2\}$, deleting any $k$ of its digits leaves a prime number.

2010 ISI B.Stat Entrance Exam, 10

There are $100$ people in a queue waiting to enter a hall. The hall has exactly $100$ seats numbered from $1$ to $100$. The first person in the queue enters the hall, chooses any seat and sits there. The $n$-th person in the queue, where $n$ can be $2, . . . , 100$, enters the hall after $(n-1)$-th person is seated. He sits in seat number $n$ if he finds it vacant; otherwise he takes any unoccupied seat. Find the total number of ways in which $100$ seats can be filled up, provided the $100$-th person occupies seat number $100$.

2019 Serbia Team Selection Test, P6

A [i]figuric [/i] is a convex polyhedron with $26^{5^{2019}}$ faces. On every face of a figuric we write down a number. When we throw two figurics (who don't necessarily have the same set of numbers on their sides) into the air, the figuric which falls on a side with the greater number wins; if this number is equal for both figurics, we repeat this process until we obtain a winner. Assume that a figuric has an equal probability of falling on any face. We say that one figuric rules over another if when throwing these figurics into the air, it has a strictly greater probability to win than the other figuric (it can be possible that given two figurics, no figuric rules over the other). Milisav and Milojka both have a blank figuric. Milisav writes some (not necessarily distinct) positive integers on the faces of his figuric so that they sum up to $27^{5^{2019}}$. After this, Milojka also writes positive integers on the faces of her figuric so that they sum up to $27^{5^{2019}}$. Is it always possible for Milojka to create a figuric that rules over Milisav's? [i]Proposed by Bojan Basic[/i]

2015 ELMO Problems, 5

Let $m, n, k > 1$ be positive integers. For a set $S$ of positive integers, define $S(i,j)$ for $i<j$ to be the number of elements in $S$ strictly between $i$ and $j$. We say two sets $(X,Y)$ are a [i]fat[/i] pair if \[ X(i,j)\equiv Y(i,j) \pmod{n} \] for every $i,j \in X \cap Y$. (In particular, if $\left\lvert X \cap Y \right\rvert < 2$ then $(X,Y)$ is fat.) If there are $m$ distinct sets of $k$ positive integers such that no two form a fat pair, show that $m<n^{k-1}$. [i]Proposed by Allen Liu[/i]

2018 Nordic, 1

Let $k$ be a positive integer and $P$ a point in the plane. We wish to draw lines, none passing through $P$, in such a way that any ray starting from $P$ intersects at least $k$ of these lines. Determine the smallest number of lines needed.

2020 Peru Cono Sur TST., P4

Find all odd integers $n$ for which $\frac{2^{\phi (n)}-1}{n}$ is a perfect square.

2000 Argentina National Olympiad, 5

A computer program generates a sequence of numbers with the following rule: the first number is written by Camilo; thereafter, the program calculates the integer division of the last number generated by $18$; thus obtains a quotient and a remainder. The sum of that quotient plus that remainder is the next number generated. For example, if Camilo's number is $5291,$ the computer makes $5291 = 293 \times 18 + 17$, and generates $310 = 293 + 17$. The next number generated will be $21$, since $310 = 17 \times 18 + 4$ and $17 + 4= 21$; etc Whatever Camilo's initial number is, from some point on, the computer always generates the same number. Determine what is that number that will be repeated indefinitely, if Camilo's initial number is equal to $2^{110}.$

2001 Federal Math Competition of S&M, Problem 2

Given are $5$ segments, such that from any three of them one can form a triangle. Prove that from some three of them one can form an acute-angled triangle.

2007 APMO, 5

A regular $ (5 \times 5)$-array of lights is defective, so that toggling the switch for one light causes each adjacent light in the same row and in the same column as well as the light itself to change state, from on to off, or from off to on. Initially all the lights are switched off. After a certain number of toggles, exactly one light is switched on. Find all the possible positions of this light.

2014 Contests, A3

Tags: sequence , algebra
$\boxed{A3}$The sequence $a_1,a_2,a_3,...$ is defined by $a_1=a_2=1,a_{2n+1}=2a_{2n}-a_n$ and $a_{2n+2}=2a_{2n+1}$ for $n\in{N}.$Prove that if $n>3$ and $n-3$ is divisible by $8$ then $a_n$ is divisible by $5$

2020 Middle European Mathematical Olympiad, 1#

Let $\mathbb{N}$ be the set of positive integers. Determine all positive integers $k$ for which there exist functions $f:\mathbb{N} \to \mathbb{N}$ and $g: \mathbb{N}\to \mathbb{N}$ such that $g$ assumes infinitely many values and such that $$ f^{g(n)}(n)=f(n)+k$$ holds for every positive integer $n$. ([i]Remark.[/i] Here, $f^{i}$ denotes the function $f$ applied $i$ times i.e $f^{i}(j)=f(f(\dots f(j)\dots ))$.)

1979 Swedish Mathematical Competition, 3

Tags: algebra
Express \[ x^{13} + \frac{1}{x^{13}} \] as a polynomial in $y = x + \frac{1}{x}$.

2024 Dutch IMO TST, 1

For a positive integer $n$, let $\alpha(n)$ be the arithmetic mean of the divisors of $n$, and let $\beta(n)$ be the arithmetic mean of the numbers $k \le n$ with $\text{gcd}(k,n)=1$. Determine all positive integers $n$ with $\alpha(n)=\beta(n)$.

2010 Indonesia TST, 4

For each positive integer $ n$, define $ f(n)$ as the number of digits $ 0$ in its decimal representation. For example, $ f(2)\equal{}0$, $ f(2009)\equal{}2$, etc. Please, calculate \[ S\equal{}\sum_{k\equal{}1}^{n}2^{f(k)},\] for $ n\equal{}9,999,999,999$. [i]Yudi Satria, Jakarta[/i]

2017 AMC 8, 19

Tags:
For any positive integer $M$, the notation $M!$ denotes the product of the integers $1$ through $M$. What is the largest integer $n$ for which $5^n$ is a factor of the sum $98!+99!+100!$ ? $\textbf{(A) }23\qquad\textbf{(B) }24\qquad\textbf{(C) }25\qquad\textbf{(D) }26\qquad\textbf{(E) }27$