This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2005 Bosnia and Herzegovina Team Selection Test, 2

If $a_1$, $a_2$ and $a_3$ are nonnegative real numbers for which $a_1+a_2+a_3=1$, then prove the inequality $a_1\sqrt{a_2}+a_2\sqrt{a_3}+a_3\sqrt{a_1}\leq \frac{1}{\sqrt{3}}$

2003 VJIMC, Problem 4

Let $A$ and $B$ be complex Hermitian $2\times2$ matrices having the pairs of eigenvalues $(\alpha_1,\alpha_2)$ and $(\beta_1,\beta_2)$, respectively. Determine all possible pairs of eigenvalues $(\gamma_1,\gamma_2)$ of the matrix $C=A+B$. (We recall that a matrix $A=(a_{ij})$ is Hermitian if and only if $a_{ij}=\overline{a_{ji}}$ for all $i$ and $j$.)

2009 ISI B.Math Entrance Exam, 8

Suppose you are given six colours and, are asked to colour each face of a cube by a different colour. Determine the different number of colouring possible.

2004 Estonia National Olympiad, 1

Tags: number theory , gcd , lcm
Find all triples of positive integers $(x, y, z)$ satisfying $x < y < z$, $gcd(x, y) = 6, gcd(y, z) = 10, gcd(z, x) = 8$ and $lcm(x, y,z) = 2400$.

2012 IFYM, Sozopol, 5

Let $\sum_{i=1}^n a_i x_i =0$, $a_i,x_i\in \mathbb{Z}$. It is known that however we color $\mathbb{Z}$ with finite number of colors, then the given equation has a monochromatic (of one color) solution. Prove that there is some non-empty sum of its coefficients equal to 0.

1992 AIME Problems, 11

Lines $l_1$ and $l_2$ both pass through the origin and make first-quadrant angles of $\frac{\pi}{70}$ and $\frac{\pi}{54}$ radians, respectively, with the positive x-axis. For any line $l$, the transformation $R(l)$ produces another line as follows: $l$ is reflected in $l_1$, and the resulting line is reflected in $l_2$. Let $R^{(1)}(l)=R(l)$ and $R^{(n)}(l)=R\left(R^{(n-1)}(l)\right)$. Given that $l$ is the line $y=\frac{19}{92}x$, find the smallest positive integer $m$ for which $R^{(m)}(l)=l$.

2006 Regional Competition For Advanced Students, 4

Tags: algebra
Let $ <h_n>$ $ n\in\mathbb N$ a harmonic sequence of positive real numbers (that means that every $ h_n$ is the harmonic mean of its two neighbours $ h_{n\minus{}1}$ and $ h_{n\plus{}1}$ : $ h_n\equal{}\frac{2h_{n\minus{}1}h_{n\plus{}1}}{h_{n\minus{}1}\plus{}h_{n\plus{}1}}$) Show that: if the sequence includes a member $ h_j$, which is the square of a rational number, it includes infinitely many members $ h_k$, which are squares of rational numbers.

2024 AMC 12/AHSME, 13

There are real numbers $x,y,h$ and $k$ that satisfy the system of equations $$x^2 + y^2 - 6x - 8y = h$$ $$x^2 + y^2 - 10x + 4y = k$$ What is the minimum possible value of $h+k$? $ \textbf{(A) }-54 \qquad \textbf{(B) }-46 \qquad \textbf{(C) }-34 \qquad \textbf{(D) }-16 \qquad \textbf{(E) }16 \qquad $

2022 Princeton University Math Competition, A2 / B4

Tags: geometry , conic
An ellipse has foci $A$ and $B$ and has the property that there is some point $C$ on the ellipse such that the area of the circle passing through $A$, $B$, and, $C$ is equal to the area of the ellipse. Let $e$ be the largest possible eccentricity of the ellipse. One may write $e^2$ as $\frac{a+\sqrt{b}}{c}$ , where $a, b$, and $c$ are integers such that $a$ and $c$ are relatively prime, and b is not divisible by the square of any prime. Find $a^2 + b^2 + c^2$.

2022 China Team Selection Test, 4

Find all positive integers $a,b,c$ and prime $p$ satisfying that \[ 2^a p^b=(p+2)^c+1.\]

2024 Harvard-MIT Mathematics Tournament, 4

Sally the snail sits on the $3 \times 24$ lattice of points $(i, j)$ for all $1 \le i \le 3$ and $1 \le j \le 24$. She wants to visit every point in the lattice exactly once. In a move, Sally can move to a point in the lattice exactly one unit away. Given that Sally starts at $(2, 1)$, compute the number of possible paths Sally can take.

2017 Turkey EGMO TST, 3

For all positive real numbers $x,y,z$ satisfying the inequality $$\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}\leq 3,$$ prove that $$\frac{x^2}{y^3}+\frac{y^2}{z^3}+\frac{z^2}{x^3}\geq \frac{x}{y}+\frac{y}{z}+\frac{z}{x}.$$

2018 Macedonia National Olympiad, Problem 1

Determine all natural numbers $n$ such that $9^n - 7$ can be represented as a product of at least two consecutive natural numbers.

MMPC Part II 1958 - 95, 1972

[b]p1.[/b] In a given tetrahedron the sum of the measures of the three face angles at each of the vertices is $180$ degrees. Prove that all faces of the tetrahedron are congruent triangles. [img]https://cdn.artofproblemsolving.com/attachments/c/c/40f03324fd19f6a5e0a5e541153a2b38faac79.png[/img] [b]p2.[/b] The digital sum $D(n)$ of a positive integer $n$ is defined recursively by: $D(n) = n$ if $1 \le n \le 9$ $D(n) = D(a_0 + a_1 + ... + a_m)$ if $n>9$ where $a_0 , a_1 ,..,a_m$ are all the digits of $n$ expressed in base ten. (For example, $D(959) = D(26) = D(8) = 8$.) Prove that $D(n \times 1234)= D(n)$ fcr all positive integers $n$ . [b]p3.[/b] A right triangle has area $A$ and perimeter $P$ . Find the largest possible value for the positive constant $k$ such that for every such triangle, $P^2 \ge kA$ . [b]p4.[/b] In the accompanying diagram, $\overline{AB}$ is tangent at $A$ to a circle of radius $1$ centered at $O$ . The segment $\overline{AP}$ is equal in length to the arc $AB$ . Let $C$ be the point of intersection of the lines $AO$ and $PB$ . Determine the length of segment $\overline{AC}$ in terms of $a$ , where $a$ is the measure of $\angle AOB$ in radians. [img]https://cdn.artofproblemsolving.com/attachments/e/0/596e269a89a896365b405af7bc6ca47a1f7c57.png[/img] [b]p5.[/b] Let $a_1 = a > 0$ and $a_2 = b >a$. Consider the sequence $\{a_1,a_2,a_3,...\}$ of positive numbers defined by: $a_3=\sqrt{a_1a_2}$, $a_4=\sqrt{a_2a_3}$, $...$ and in general, $a_n=\sqrt{a_{n-2}a_{n-1}}$, for $n\ge 3$ . Develop a formula $a_n$ expressing in terms of $a$, $b$ and $n$ , and determine $\lim_{n \to \infty} a_n$. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2024 AIME, 2

Tags: logarithm
Real numbers $x$ and $y$ with $x,y>1$ satisfy $\log_x(y^x)=\log_y(x^{4y})=10.$ What is the value of $xy$?

2008 BAMO, 2

Consider a $7\times7$ chessboard that starts out with all the squares white. We start painting squares black, one at a time, according to the rule that after painting the first square, each newly painted square must be adjacent along a side to only the square just previously painted. The final figure painted will be a connected “snake” of squares. (a) Show that it is possible to paint $31$ squares. (b) Show that it is possible to paint $32$ squares. (c) Show that it is possible to paint $33$ squares.

1953 Putnam, B2

Let $a_0 ,a_1 , \ldots, a_n$ be real numbers and let $f(x) =a_n x^n +\ldots +a_1 x +a_0.$ Suppose that $f(i)$ is an integer for all $i.$ Prove that $n! \cdot a_k$ is an integer for each $k.$

2011 Kosovo National Mathematical Olympiad, 3

Tags: inequalities
If $a,b,c$ are real positive numbers prove that the inequality holds: \[ \frac{\sqrt{a^3+b^3}}{a^2+b^2}+\frac{\sqrt{b^3+c^3}}{b^2+c^2}+\frac{\sqrt{c^3+a^3}}{c^2+a^2} \ge \frac{6(ab+bc+ac)}{(a+b+c)\sqrt{(a+b)(b+c)(c+a)}} \]

2007 Kyiv Mathematical Festival, 1

Find all pairs of positive integers $(a,b)$ such that $\sqrt{a-1}+\sqrt{b-1}=\sqrt{ab-1}.$

Mid-Michigan MO, Grades 5-6, 2004

[b]p1.[/b] On the island of Nevermind some people are liars; they always lie. The remaining habitants of the island are truthlovers; they tell only the truth. Three habitants of the island, $A, B$, and $C$ met this morning. $A$ said: “All of us are liars”. $B$ said: “Only one of us is a truthlover”. Who of them is a liar and who of them is a truthlover? [b]p2.[/b] Pinocchio has $9$ pieces of paper. He is allowed to take a piece of paper and cut it in $5$ pieces or $7$ pieces which increases the number of his pieces. Then he can take again one of his pieces of paper and cut it in $5$ pieces or $7$ pieces. He can do this again and again as many times as he wishes. Can he get $2004$ pieces of paper? [b]p3.[/b] In Dragonland there are coins of $1$ cent, $2$ cents, $10$ cents, $20$ cents, and $50$ cents. What is the largest amount of money one can have in coins, yet still not be able to make exactly $1$ dollar? [b]p4.[/b] Find all solutions $a, b, c, d, e$ if it is known that they represent distinct digits and satisfy the following: $\begin{tabular}{ccccc} & a & b & c & d \\ + & a & c & a & c \\ \hline c & d & e & b & c \\ \end{tabular}$ [b]p5.[/b] Two players play the following game. On the lowest left square of an $8\times 8$ chessboard there is a rook. The first player is allowed to move the rook up or to the right by an arbitrary number of squares. The second player is also allowed to move the rook up or to the right by an arbitrary number of squares. Then the first player is allowed to do this again, and so on. The one who moves the rook to the upper right square wins. Who has a winning strategy? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2014 Bosnia Herzegovina Team Selection Test, 1

Tags: algebra
Sequence $a_n$ is defined by $a_1=\frac{1}{2}$, $a_m=\frac{a_{m-1}}{2m \cdot a_{m-1} + 1}$ for $m>1$. Determine value of $a_1+a_2+...+a_k$ in terms of $k$, where $k$ is positive integer.

2010 Belarus Team Selection Test, 2.4

Find all functions $f, g : Q \to Q$ satisfying the following equality $f(x + g(y)) = g(x) + 2 y + f(y)$ for all $x, y \in Q$. (I. Voronovich)

the 15th XMO, 4

Let $p$ be a prime number and $k$ is a integer with $p|2^k-1$ for $a\in \{ 1,2,\ldots,p-1\}$ , let $m_{a}$ be the only element that satisfies $p|am_{a}-1$ and define $T_{a}= \{ x \in \{1,2,\ldots p-1\} | \{ \frac {m_{a}x}{p} - \frac {x}{ap} \} < \frac{1}{2}$and there exists integer y satisfying $p | x-y^\[k+1\] \}$ Try to proof that there exists an integer $m$ and integers $1 \le a_1 <a_2< \ldots < a_{m} \le p-1$ satisfying $$ |T_{a_1}| = |T_{a_2}| = \ldots = |T_{a_{m}}| = m $$

2011 Princeton University Math Competition, A3 / B5

Two points are chosen uniformly at random on the sides of a square with side length 1. If $p$ is the probability that the distance between them is greater than $1$, what is $\lfloor 100p \rfloor$? (Note: $\lfloor x \rfloor$ denotes the greatest integer less than or equal to $x$.)

2022 European Mathematical Cup, 1

Determine all positive integers $n$ for which there exist positive divisors $a$, $b$, $c$ of $n$ such that $a>b>c$ and $a^2 - b^2$, $b^2 - c^2$, $a^2 - c^2$ are also divisors of $n$.