This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2004 AMC 10, 20

Tags: geometry , ratio
Points $E$ and $F$ are located on square $ABCD$ so that $\Delta BEF$ is equilateral. What is the ratio of the area of $\Delta DEF$ to that of $\Delta ABE$? [asy] pair A=origin, B=(1,0), C=(1,1), D=(0,1), X=B+2*dir(165), E=intersectionpoint(B--X, A--D), Y=B+2*dir(105), F=intersectionpoint(B--Y, D--C); draw(B--C--D--A--B--F--E--B); pair point=(0.5,0.5); label("$A$", A, dir(point--A)); label("$B$", B, dir(point--B)); label("$C$", C, dir(point--C)); label("$D$", D, dir(point--D)); label("$E$", E, dir(point--E)); label("$F$", F, dir(point--F));[/asy] $\textbf{(A)}\; \frac43\qquad \textbf{(B)}\; \frac32\qquad \textbf{(C)}\; \sqrt3\qquad \textbf{(D)}\; 2\qquad \textbf{(E)}\; 1+\sqrt3\qquad$

PEN H Problems, 47

Show that the equation $x^4 +y^4 +4z^4 =1$ has infinitely many rational solutions.

1987 Bulgaria National Olympiad, Problem 2

Let there be given a polygon $P$ which is mapped onto itself by two rotations: $\rho_1$ with center $O_1$ and angle $\omega_1$, and $\rho_2$ with center $O_2$ and angle $\omega_2~(0<\omega_i<2\pi)$. Show that the ratio $\frac{\omega_1}{\omega_2}$ is rational.

2016 District Olympiad, 3

Tags: inequalities
Let be nonnegative real numbers $ a,b,c, $ holding the inequality: $ \sum_{\text{cyc}} \frac{a}{b+c+1} \le 1. $ Prove that $ \sum_{\text{cyc}} \frac{1}{b+c+1} \ge 1. $

2019 ELMO Shortlist, N3

Let $S$ be a nonempty set of positive integers such that, for any (not necessarily distinct) integers $a$ and $b$ in $S$, the number $ab+1$ is also in $S$. Show that the set of primes that do not divide any element of $S$ is finite. [i]Proposed by Carl Schildkraut[/i]

2007 India IMO Training Camp, 1

A sequence of real numbers $ a_{0},\ a_{1},\ a_{2},\dots$ is defined by the formula \[ a_{i \plus{} 1} \equal{} \left\lfloor a_{i}\right\rfloor\cdot \left\langle a_{i}\right\rangle\qquad\text{for}\quad i\geq 0; \]here $a_0$ is an arbitrary real number, $\lfloor a_i\rfloor$ denotes the greatest integer not exceeding $a_i$, and $\left\langle a_i\right\rangle=a_i-\lfloor a_i\rfloor$. Prove that $a_i=a_{i+2}$ for $i$ sufficiently large. [i]Proposed by Harmel Nestra, Estionia[/i]

1999 AMC 12/AHSME, 12

What is the maximum number of points of intersection of the graphs of two different fourth degree polynomial functions $ y \equal{} p(x)$ and $ y \equal{} q(x)$, each with leading coefficient $ 1$? $ \textbf{(A)}\ 1 \qquad \textbf{(B)}\ 2 \qquad \textbf{(C)}\ 3 \qquad \textbf{(D)}\ 4 \qquad \textbf{(E)}\ 8$

2021 Alibaba Global Math Competition, 5

Suppose that $A$ is a finite subset of $\mathbb{R}^d$ such that (a) every three distinct points in $A$ contain two points that are exactly at unit distance apart, and (b) the Euclidean norm of every point $v$ in $A$ satisfies \[\sqrt{\frac{1}{2}-\frac{1}{2\vert A\vert}} \le \|v\| \le \sqrt{\frac{1}{2}+\frac{1}{2\vert A\vert}}.\] Prove that the cardinality of $A$ is at most $2d+4$.

2000 Hungary-Israel Binational, 3

Let ${ABC}$ be a non-equilateral triangle. The incircle is tangent to the sides ${BC,CA,AB}$ at ${A_1,B_1,C_1}$, respectively, and M is the orthocenter of triangle ${A_1B_1C_1}$. Prove that ${M}$ lies on the line through the incenter and circumcenter of ${\vartriangle ABC}$.

1962 Dutch Mathematical Olympiad, 2

The $n^{th}$ term of a sequence is $t_n$. For $n \ge 1$, $t_n$ is given by the relation: $$t_n= n^3+\frac12 n^2+ \frac13 n + \frac14$$ The $n^{th}$ term of a second sequence $T_n$, where $T_n$ represents the smallest integer greater than $t_n$. Calculate: $$(T_1+T_2+...+T_{1014}) -(t_1+t_2+...+t_{1014}) $$

2009 Austria Beginners' Competition, 3

There are any number of stamps with the values ​​$134$, $135$, $...$, $142$ and $143$ cents available. Find the largest integer value (in cents) that cannot be represented by these stamps. (G. Woeginger, TU Eindhoven, The Netherlands) [hide=original wording]Es stehen beliebig viele Briefmarken mit den Werten 134, 135. . .., 142 und 143 Cent zur Verfügung. Man bestimme den größten ganzzahligen Wert (in Cent), der nicht durch diese Briefmarken dargestellt werden kann.[/hide]

1995 Romania Team Selection Test, 3

Let $n \geq 6$ and $3 \leq p < n - p$ be two integers. The vertices of a regular $n$-gon are colored so that $p$ vertices are red and the others are black. Prove that there exist two congruent polygons with at least $[p/2] + 1$ vertices, one with all the vertices red and the other with all the vertices black.

1994 Korea National Olympiad, Problem 2

Given a set $S \subset N$ and a positive integer n, let $S\oplus \{n\} = \{s+n / s \in S\}$. The sequence $S_k$ of sets is defined inductively as follows: $S_1 = {1}$, $S_k=(S_{k-1} \oplus \{k\}) \cup \{2k-1\}$ for $k = 2,3,4, ...$ (a) Determine $N - \cup _{k=1}^{\infty} S_k$. (b) Find all $n$ for which $1994 \in S_n$.

2021 Hong Kong TST, 4

Let $n$ be a positive integer. Is it possible to express $n^2+3n+3$ into the form $ab$ with $a$ and $b$ being positive integers, and such that the difference between $a$ and $b$ is smaller than $2\sqrt{n+1}$?

2016 Czech-Polish-Slovak Junior Match, 4

We are given an acute-angled triangle $ABC$ with $AB < AC < BC$. Points $K$ and $L$ are chosen on segments $AC$ and $BC$, respectively, so that $AB = CK = CL$. Perpendicular bisectors of segments $AK$ and $BL$ intersect the line $AB$ at points $P$ and $Q$, respectively. Segments $KP$ and $LQ$ intersect at point $M$. Prove that $AK + KM = BL + LM$. Poland

1985 AMC 12/AHSME, 6

Tags: probability , ratio
One student in a class of boys and girls is chosen to represent the class. Each student is equally likely to be chosen and the probability that a boy is chosen is $ \frac23$ of the probability that a girl is chosen. The ratio of the number of boys to the total number of boys and girls is $ \textbf{(A)}\ \frac13 \qquad \textbf{(B)}\ \frac25 \qquad \textbf{(C)}\ \frac12 \qquad \textbf{(D)}\ \frac35 \qquad \textbf{(E)}\ \frac23$

1995 AMC 12/AHSME, 25

Tags:
A list of five positive integers has mean $12$ and range $18$. The mode and median are both $8$. How many different values are possible for the second largest element of the list? $\textbf{(A)}\ 4\qquad \textbf{(B)}\ 6 \qquad \textbf{(C)}\ 8\qquad \textbf{(D)}\ 10\qquad \textbf{(E)}\ 12$

2021 CMIMC, 1.5

There are exactly 7 possible tetrominos (groups of 4 connected squares in a grid): [img]https://cdn.discordapp.com/attachments/813077401265242143/816189385859006474/tetris.png[/img] Daniel has a $2 \times 20210$ rectangle and wants to tile the interior with tetrominos without overlaps, pieces sticking out, or extra pieces left over. Note that you are allowed to rotate tetrominos but not reflect them. For how many multisets of tetrominos (ie. an ordered tuple of how many of each tile he has) is it possible to exactly tile his $2\times20210$ rectangle? [i]Proposed by Dilhan Salgado[/i]

1987 AMC 8, 25

Tags: probability
Ten balls numbered $1$ to $10$ are in a jar. Jack reaches into the jar and randomly removes one of the balls. Then Jill reaches into the jar and randomly removes a different ball. The probability that the sum of the two numbers on the balls removed is even is $\text{(A)}\ \frac{4}{9} \qquad \text{(B)}\ \frac{9}{19} \qquad \text{(C)}\ \frac{1}{2} \qquad \text{(D)}\ \frac{10}{19} \qquad \text{(E)}\ \frac{5}{9}$

1966 IMO Longlists, 31

Solve the equation $|x^2 -1|+ |x^2 - 4| = mx$ as a function of the parameter $m$. Which pairs $(x,m)$ of integers satisfy this equation?

1985 Bundeswettbewerb Mathematik, 4

Each point of the 3-dimensional space is coloured with exactly one of the colours red, green and blue. Let $R$, $G$ and $B$, respectively, be the sets of the lengths of those segments in space whose both endpoints have the same colour (which means that both are red, both are green and both are blue, respectively). Prove that at least one of these three sets includes all non-negative reals.

1995 Mexico National Olympiad, 6

A $1$ or $0$ is placed on each square of a $4 \times 4$ board. One is allowed to change each symbol in a row, or change each symbol in a column, or change each symbol in a diagonal (there are $14$ diagonals of lengths $1$ to $4$). For which arrangements can one make changes which end up with all $0$s?

1995 China Team Selection Test, 2

$ A$ and $ B$ play the following game with a polynomial of degree at least 4: \[ x^{2n} \plus{} \_x^{2n \minus{} 1} \plus{} \_x^{2n \minus{} 2} \plus{} \ldots \plus{} \_x \plus{} 1 \equal{} 0 \] $ A$ and $ B$ take turns to fill in one of the blanks with a real number until all the blanks are filled up. If the resulting polynomial has no real roots, $ A$ wins. Otherwise, $ B$ wins. If $ A$ begins, which player has a winning strategy?

2020 Malaysia IMONST 1, 11

If we divide $2020$ by a prime $p$, the remainder is $6$. Determine the largest possible value of $p$.

2005 VTRMC, Problem 3

We wish to tile a strip of $n$ $1$-inch by $1$-inch squares. We can use dominos which are made up of two tiles that cover two adjacent squares, or $1$-inch square tiles which cover one square. We may cover each square with one or two tiles and a tile can be above or below a domino on a square, but no part of a domino can be placed on any part of a different domino. We do not distinguish whether a domino is above or below a tile on a given square. Let $t(n)$ denote the number of ways the strip can be tiled according to the above rules. Thus for example, $t(1)=2$ and $t(2)=8$. Find a recurrence relation for $t(n)$, and use it to compute $t(6)$.