This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

MOAA Gunga Bowls, 2021.15

Tags:
Let $a,b,c,d$ be the four roots of the polynomial \[x^4+3x^3-x^2+x-2.\] Given that $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}=\frac{1}{2}$ and $\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}=-\frac{3}{4}$, the value of \[\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\] can be expressed as $\frac{m}{n}$ for relatively prime positive integers $m$ and $n$. Compute $m+n$. [i]Proposed by Nathan Xiong[/i]

2000 Turkey MO (2nd round), 3

Let $f(x,y)$ and $g(x,y)$ be real valued functions defined for every $x,y \in \{1,2,..,2000\}$. If there exist $X,Y \subset \{1,2,..,2000\}$ such that $s(X)=s(Y)=1000$ and $x\notin X$ and $y\notin Y$ implies that $f(x,y)=g(x,y)$ than, what is the maximum number of $(x,y)$ couples where $f(x,y)\neq g(x,y)$.

2014 Saudi Arabia Pre-TST, 2.2

Let $a_1, a_2, a_3, a_4, a_5$ be nonzero real numbers. Prove that the polynomial $$P(x)= \prod_{k=0}^{4} a_{k+1}x^4 + a_{k+2}x^3 + a_{k+3}x^2 + a_{k+4}x + a_{k+5}$$, where $a_{5+i} = a_i$ for $i = 1,2, 3,4$, has a root with negative real part.

2019 Hanoi Open Mathematics Competitions, 7

Let $p$ and $q$ be odd prime numbers. Assume that there exists a positive integer $n$ such that $pq-1= n^3$. Express $p+q$ in terms of $n$

2023-24 IOQM India, 14

Let $A B C$ be a triangle in the $x y$ plane, where $B$ is at the origin $(0,0)$. Let $B C$ be produced to $D$ such that $B C: C D=1: 1, C A$ be produced to $E$ such that $C A: A E=1: 2$ and $A B$ be produced to $F$ such that $A B: B F=1: 3$. Let $G(32,24)$ be the centroid of the triangle $A B C$ and $K$ be the centroid of the triangle $D E F$. Find the length $G K$.

1976 Euclid, 8

Source: 1976 Euclid Part A Problem 8 ----- Given that $a$, $b$, and $c$ are the roots of the equation $x^3-3x^2+mx+24=0$, and that $-a$ and $-b$ are the roots of the equation $x^2+nx-6=0$, then the value of $n$ is $\textbf{(A) } 1 \qquad \textbf{(B) } -1 \qquad \textbf{(C) } 7 \qquad \textbf{(D) } -7 \qquad \textbf{(E) } \text{none of these}$

2009 Kyiv Mathematical Festival, 3

Let $AB$ be a segment of a plane. Is it possible to paint the plane in $2009$ colors in such a way that both of the following conditions are satisfied? 1) Every two points of the same color can be connected by a polygonal line. 2) For any point $C$ of $AB$, every $n \in N$ and every $k\in \{1,2,3,...,2009\}$ , there exists a point $D$, painted in $k$-th color such that the length of $CD$ is less than $0,0...01$, where all the zeros after the decimal point are exactly $n$.

2024 HMNT, 30

Tags: guts
Compute the number of ways to shade exactly $4$ distinct cells of a $4\times4$ grid such that no two shaded cells share one or more vertices.

2006 Argentina National Olympiad, 4

Find the greatest number $M$ with the following property: in each rearrangement of the $2006$ integer numbers $1,2,...2006$ there are $1010$ numbers located consecutively in that rearrangement whose sum is greater than or equal to $M$.

2018 AMC 12/AHSME, 14

The solution to the equation $\log_{3x} 4 = \log_{2x} 8$, where $x$ is a positive real number other than $\tfrac{1}{3}$ or $\tfrac{1}{2}$, can be written as $\tfrac {p}{q}$ where $p$ and $q$ are relatively prime positive integers. What is $p + q$? $\textbf{(A) } 5 \qquad \textbf{(B) } 13 \qquad \textbf{(C) } 17 \qquad \textbf{(D) } 31 \qquad \textbf{(E) } 35 $

2019 Spain Mathematical Olympiad, 5

We consider all pairs (x, y) of real numbers such that $0\leq x \leq y \leq 1$.Let $M (x,y)$ the maximum value of the set $$A=\{xy, 1-x-y+xy, x+y-2xy\}.$$ Find the minimum value that $M(x,y)$ can take for all these pairs $(x,y)$.

2022 Assam Mathematical Olympiad, 13

Tags:
Calculate the given expression $$\sum_{k=0}^{n} \frac{2^k}{3^{2^k}+1}$$

2008 Romania National Olympiad, 4

Tags: geometry
On the sides of triangle $ ABC$ we consider points $ C_1,C_2 \in (AB), B_1,B_2 \in (AC), A_1,A_2 \in (BC)$ such that triangles $ A_1,B_1,C_1$ and $ A_2B_2C_2$ have a common centroid. Prove that sets $ [A_1,B_1]\cap [A_2B_2], [B_1C_1]\cap[B_2C_2], [C_1A_1]\cap [C_2A_2]$ are not empty.

ICMC 8, 2

Tags:
Alice and the Mad Hatter are playing a game. At the start of the game, three $2024$’s are written on the blackboard. Then, Alice and the Mad Hatter alternate turns, with the Mad Hatter starting. On the Mad Hatter’s turn, he must pick one of the numbers on the blackboard and increase it by $1$. On Alice’s turn, she must: - pick one of the numbers on the blackboard and decrease it by 1, and then - replace the two numbers $a$ and $b$ on the blackboard which were not chosen by the Mad Hatter on the previous turn with $\sqrt{ab}$. Alice wins if, on the start of her turn, any of the three numbers are less than $1$. Can the Mad Hatter prevent Alice from winning?

1998 AMC 12/AHSME, 10

A large square is divided into a small square surrounded by four congruent rectangles as shown. The perimeter of each of the congruent rectangles is 14. What is the area of the large square? [asy]unitsize(3mm); defaultpen(linewidth(.8pt)); draw((0,0)--(7,0)--(7,7)--(0,7)--cycle); draw((1,0)--(1,6)); draw((7,1)--(1,1)); draw((6,7)--(6,1)); draw((0,6)--(6,6));[/asy]$ \textbf{(A)}\ \ 49 \qquad \textbf{(B)}\ \ 64 \qquad \textbf{(C)}\ \ 100 \qquad \textbf{(D)}\ \ 121 \qquad \textbf{(E)}\ \ 196$

2001 District Olympiad, 3

Consider a continuous function $f:[0,1]\rightarrow \mathbb{R}$ such that for any third degree polynomial function $P:[0,1]\to [0,1]$, we have \[\int_0^1f(P(x))dx=0\] Prove that $f(x)=0,\ (\forall)x\in [0,1]$. [i]Mihai Piticari[/i]

2019 Online Math Open Problems, 10

Tags:
Let $k$ be a positive integer. Marco and Vera play a game on an infinite grid of square cells. At the beginning, only one cell is black and the rest are white. A turn in this game consists of the following. Marco moves first, and for every move he must choose a cell which is black and which has more than two white neighbors. (Two cells are neighbors if they share an edge, so every cell has exactly four neighbors.) His move consists of making the chosen black cell white and turning all of its neighbors black if they are not already. Vera then performs the following action exactly $k$ times: she chooses two cells that are neighbors to each other and swaps their colors (she is allowed to swap the colors of two white or of two black cells, though doing so has no effect). This, in totality, is a single turn. If Vera leaves the board so that Marco cannot choose a cell that is black and has more than two white neighbors, then Vera wins; otherwise, another turn occurs. Let $m$ be the minimal $k$ value such that Vera can guarantee that she wins no matter what Marco does. For $k=m$, let $t$ be the smallest positive integer such that Vera can guarantee, no matter what Marco does, that she wins after at most $t$ turns. Compute $100m + t$. [i]Proposed by Ashwin Sah[/i]

2020 Romania EGMO TST, P2

Tags: algebra , function
Suppose a function $f:\mathbb{R}\to\mathbb{R}$ satisfies $|f(x+y)|\geqslant|f(x)+f(y)|$ for all real numbers $x$ and $y$. Prove that equality always holds. Is the conclusion valid if the sign of the inequality is reversed?

2018 ELMO Shortlist, 5

Tags: geometry
Let scalene triangle $ABC$ have altitudes $AD, BE, CF$ and circumcenter $O$. The circumcircles of $\triangle ABC$ and $\triangle ADO$ meet at $P \ne A$. The circumcircle of $\triangle ABC$ meets lines $PE$ at $X \ne P$ and $PF$ at $Y \ne P$. Prove that $XY \parallel BC$. [i]Proposed by Daniel Hu[/i]

2007 Spain Mathematical Olympiad, Problem 3

Tags: geometry
$O$ is the circumcenter of triangle $ABC$. The bisector from $A$ intersects the opposite side in point $P$. Prove that the following is satisfied: $$AP^2 + OA^2 - OP^2 = bc.$$

2006 Tournament of Towns, 4

Is there exist some positive integer $n$, such that the first decimal of $2^n$ (from left to the right) is $5$ while the first decimal of $5^n$ is $2$? [i](5 points)[/i]

1957 AMC 12/AHSME, 37

In right triangle $ ABC$, $ BC \equal{} 5$, $ AC \equal{} 12$, and $ AM \equal{} x$; $ \overline{MN} \perp \overline{AC}$, $ \overline{NP} \perp \overline{BC}$; $ N$ is on $ AB$. If $ y \equal{} MN \plus{} NP$, one-half the perimeter of rectangle $ MCPN$, then: [asy]defaultpen(linewidth(.8pt)); unitsize(2cm); pair A = origin; pair M = (1,0); pair C = (2,0); pair P = (2,0.5); pair B = (2,1); pair Q = (1,0.5); draw(A--B--C--cycle); draw(M--Q--P); label("$A$",A,SW); label("$M$",M,S); label("$C$",C,SE); label("$P$",P,E); label("$B$",B,NE); label("$N$",Q,NW);[/asy]$ \textbf{(A)}\ y \equal{} \frac {1}{2}(5 \plus{} 12) \qquad \textbf{(B)}\ y \equal{} \frac {5x}{12} \plus{} \frac {12}{5}\qquad \textbf{(C)}\ y \equal{} \frac {144 \minus{} 7x}{12}\qquad$ $ \textbf{(D)}\ y \equal{} 12\qquad \qquad\quad\,\, \textbf{(E)}\ y \equal{} \frac {5x}{12} \plus{} 6$

2001 BAMO, 4

A kingdom consists of $12$ cities located on a one-way circular road. A magician comes on the $13$th of every month to cast spells. He starts at the city which was the 5th down the road from the one that he started at during the last month (for example, if the cities are numbered $1–12$ clockwise, and the direction of travel is clockwise, and he started at city #$9$ last month, he will start at city #$2$ this month). At each city that he visits, the magician casts a spell if the city is not already under the spell, and then moves on to the next city. If he arrives at a city which is already under the spell, then he removes the spell from this city, and leaves the kingdom until the next month. Last Thanksgiving the capital city was free of the spell. Prove that it will be free of the spell this Thanksgiving as well.

2022 Azerbaijan JBMO TST, C4

$n$ is a natural number. Given $3n \cdot 3n$ table, the unit cells are colored white and black such that starting from the left up corner diagonals are colored in pure white or black in ratio of 2:1 respectively. ( See the picture below). In one step any chosen $2 \cdot 2$ square's white cells are colored orange, orange are colored black and black are colored white. Find all $n$ such that with finite steps, all the white cells in the table turns to black, and all black cells in the table turns to white. ( From starting point)

2017 NZMOC Camp Selection Problems, 7

Let $a, b, c, d, e$ be distinct positive integers such that $$a^4 + b^4 = c^4 + d^4 = e^5.$$ Show that $ac + bd$ is composite.