Found problems: 85335
2009 Argentina Team Selection Test, 4
Find all positive integers $ n$ such that $ 20^n \minus{} 13^n \minus{} 7^n$ is divisible by $ 309$.
1998 Putnam, 3
Let $f$ be a real function on the real line with continuous third derivative. Prove that there exists a point $a$ such that \[f(a)\cdot f^\prime(a)\cdot f^{\prime\prime}(a)\cdot f^{\prime\prime\prime}(a)\geq 0.\]
2010 IFYM, Sozopol, 3
Let $a,b,c$ be integers, $a>0$ and the equation $ax^2-bx+c=0$ has two distinct real roots in the interval $(0,1)$. Find the least possible value of $a$.
1962 IMO, 3
Consider the cube $ABCDA'B'C'D'$ ($ABCD$ and $A'B'C'D'$ are the upper and lower bases, repsectively, and edges $AA', BB', CC', DD'$ are parallel). The point $X$ moves at a constant speed along the perimeter of the square $ABCD$ in the direction $ABCDA$, and the point $Y$ moves at the same rate along the perimiter of the square $B'C'CB$ in the direction $B'C'CBB'$. Points $X$ and $Y$ begin their motion at the same instant from the starting positions $A$ and $B'$, respectively. Determine and draw the locus of the midpionts of the segments $XY$.
2009 Greece Team Selection Test, 2
Given is a triangle $ABC$ with barycenter $G$ and circumcenter $O$.The perpendicular bisectors of $GA,GB,GC$ intersect at $A_1,B_1,C_1$.Show that $O$ is the barycenter of $\triangle{A_1B_1C_1}$.
2023 Thailand Online MO, 9
Find all sequences of positive integers $a_1,a_2,\dots$ such that $$(n^2+1)a_n = n(a_{n^2}+1)$$ for all positive integers $n$.
2013 Czech-Polish-Slovak Junior Match, 3
The $ABCDE$ pentagon is inscribed in a circle and $AB = BC = CD$. Segments $AC$ and $BE$ intersect at $K$, and Segments $AD$ and $CE$ intersect at point$ L$. Prove that $AK = KL$.
2009 Regional Olympiad of Mexico Northeast, 1
Consider the sequence $\{1,3,13,31,...\}$ that is obtained by following diagonally the following array of numbers in a spiral. Find the number in the $100$th position of that sequence.
[img]https://cdn.artofproblemsolving.com/attachments/b/d/3531353472a748e3e0b1497a088472691f67fd.png[/img]
2020-21 KVS IOQM India, 11
The prime numbers $a,b$ and $c$ are such that $a+b^2=4c^2$. Determine the sum of all possible values of $a+b+c$.
2024-25 IOQM India, 6
Find the number of triples of real numbers $(a,b,c)$ such that $a^{20} + b^{20} + c^{20} = a^{24} + b^{24} + c^{24} =1$.
2022 ABMC, Speed
[i]25 problems for 30 minutes[/i]
[b]p1.[/b] Alisha has $6$ cupcakes and Tyrone has $10$ brownies. Tyrone gives some of his brownies to Alisha so that she has three times as many desserts as Tyrone. How many desserts did Tyrone give to Alisha?
[b]p2.[/b] Bisky adds one to her favorite number. She then divides the result by $2$, and gets $56$. What is her favorite number?
[b]p3.[/b] What is the maximum number of points at which a circle and a square can intersect?
[b]p4.[/b] An integer $N$ leaves a remainder of 66 when divided by $120$. Find the remainder when $N$ is divided by $24$.
[b]p5.[/b] $7$ people are chosen to run for student council. How many ways are there to pick $1$ president, $1$ vice president, and $1$ secretary?
[b]p6.[/b] Anya, Beth, Chloe, and Dmitri are all close friends, and like to make group chats to talk. How many group chats can be made if Dmitri, the gossip, must always be in the group chat and Anya is never included in them? Group chats must have more than one person.
[b]p7.[/b] There exists a telephone pole of height $24$ feet. From the top of this pole, there are two wires reaching the ground in opposite directions, with one wire $25$ feet, and the other wire 40 feet. What is the distance (in feet) between the places where the wires hit the ground?
[b]p8.[/b] Tarik is dressing up for a job-interview. He can wear a chill, business, or casual outfit. If he wears a chill oufit, he must wear a t-shirt, shorts, and flip-flops. He has eight of the first, seven of the second, and three of the third. If he wears a business outfit, he must wear a blazer, a tie, and khakis; he has two of the first, six of the second, and five of the third; finally, he can also choose the casual style, for which he has three hoodies, nine jeans, and two pairs of sneakers. How many different combinations are there for his interview?
[b]p9.[/b] If a non-degenerate triangle has sides $11$ and $13$, what is the sum of all possibilities for the third side length, given that the third side has integral length?
[b]p10.[/b] An unknown disease is spreading fast. For every person who has the this illness, it is spread on to $3$ new people each day. If Mary is the only person with this illness at the start of Monday, how many people will have contracted the illness at the end of Thursday?
[b]p11.[/b] Gob the giant takes a walk around the equator on Mars, completing one lap around Mars. If Gob’s head is $\frac{13}{\pi}$ meters above his feet, how much farther (in meters) did his head travel than his feet?
[b]p12.[/b] $2022$ leaves a remainder of $2$, $6$, $9$, and $7$ when divided by $4$, $7$, $11$, and $13$ respectively. What is the next positive integer which has the same remainders to these divisors?
[b]p13.[/b] In triangle $ABC$, $AB = 20$, $BC = 21$, and $AC = 29$. Let D be a point on $AC$ such that $\angle ABD = 45^o$. If the length of $AD$ can be represented as $\frac{a}{b}$ , what is $a + b$?
[b]p14.[/b] Find the number of primes less than $100$ such that when $1$ is added to the prime, the resulting number has $3$ divisors.
[b]p15.[/b] What is the coefficient of the term $a^4z^3$ in the expanded form of $(z - 2a)^7$?
[b]p16.[/b] Let $\ell$ and $m$ be lines with slopes $-2$, $1$ respectively. Compute $|s_1 \cdot s_2|$ if $s_1$, $s_2$ represent the slopes of the two distinct angle bisectors of $\ell$ and $m$.
[b]p17.[/b] R1D2, Lord Byron, and Ryon are creatures from various planets. They are collecting monkeys for King Avanish, who only understands octal (base $8$). R1D2 only understands binary (base $2$), Lord Byron only understands quarternary (base $4$), and Ryon only understands decimal (base $10$). R1D2 says he has $101010101$ monkeys and adds his monkey to the pile. Lord Byron says he has $3231$ monkeys and adds them to the pile. Ryon says he has $576$ monkeys and adds them to the pile. If King Avanish says he has $x$ monkeys, what is the value of $x$?
[b]p18.[/b] A quadrilateral is defined by the origin, $(3, 0)$, $(0, 10)$, and the vertex of the graph of $y = x^2 -8x+22$. What is the area of this quadrilateral?
[b]p19.[/b] There is a sphere-container, filled to the brim with fruit punch, of diameter $6$. The contents of this container are poured into a rectangular prism container, again filled to the brim, of dimensions $2\pi$ by $4$ by $3$. However, there is an excess amount in the original container. If all the excess drink is poured into conical containers with diameter $4$ and height $3$, how many containers will be used?
[b]p20.[/b] Brian is shooting arrows at a target, made of concurrent circles of radius $1$, $2$, $3$, and $4$. He gets $10$ points for hitting the innermost circle, $8$ for hitting between the smallest and second smallest circles, $5$ for between the second and third smallest circles, $2$ points for between the third smallest and outermost circle, and no points for missing the target. Assume for each shot he takes, there is a $20\%$ chance Brian will miss the target, but otherwise the chances of hitting each target are proportional to the area of the region. The chance that after three shots, Brian will have scored $15$ points can be expressed as $\frac{m}{n}$ for relatively prime positive integers $m, n$. Find $m + n$.
[b]p21.[/b] What is the largest possible integer value of $n$ such that $\frac{2n^3+n^2+7n-15}{2n+1}$ is an integer?
[b]p22.[/b] Let $f(x, y) = x^3 + x^2y + xy^2 + y^3$. Compute $f(0, 2) + f(1, 3) +... f(9, 11).$
[b]p23.[/b] Let $\vartriangle ABC$ be a triangle. Let $AM$ be a median from $A$. Let the perpendicular bisector of segment $\overline{AM}$ meet $AB$ and $AC$ at $D$, $E$ respectively. Given that $AE = 7$, $ME = MC$, and $BDEC$ is cyclic, then compute $AM^2$.
[b]p24.[/b] Compute the number of ordered triples of positive integers $(a, b, c)$ such that $a \le 10$, $b \le 11$, $c \le 12$ and $a > b - 1$ and $b > c - 1$.
[b]p25.[/b] For a positive integer $n$, denote by $\sigma (n)$ the the sum of the positive integer divisors of $n$. Given that $n + \sigma (n)$ is odd, how many possible values of $n$ are there from $1$ to $2022$, inclusive?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2005 Mid-Michigan MO, 5-6
[b]p1.[/b] Is there an integer such that the product of all whose digits equals $99$ ?
[b]p2.[/b] An elevator in a $100$ store building has only two buttons: UP and DOWN. The UP button makes the elevator go $13$ floors up, and the DOWN button makes it go $8$ floors down. Is it possible to go from the $13$th floor to the $8$th floor?
[b]p3.[/b] Cut the triangle shown in the picture into three pieces and rearrange them into a rectangle. (Pieces can not overlap.)
[img]https://cdn.artofproblemsolving.com/attachments/9/f/359d3b987012de1f3318c3f06710daabe66f28.png[/img]
[b]p4.[/b] Two players Tom and Sid play the following game. There are two piles of rocks, $5$ rocks in the first pile and $6$ rocks in the second pile. Each of the players in his turn can take either any amount of rocks from one pile or the same amount of rocks from both piles. The winner is the player who takes the last rock. Who does win in this game if Tom starts the game?
[b]p5.[/b] In the next long multiplication example each letter encodes its own digit. Find these digits.
$\begin{tabular}{ccccc}
& & & a & b \\
* & & & c & d \\
\hline
& & c & e & f \\
+ & & a & b & \\
\hline
& c & f & d & f \\
\end{tabular}$
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
1987 IMO Longlists, 63
Compute $\sum_{k=0}^{2n} (-1)^k a_k^2$ where $a_k$ are the coefficients in the expansion
\[(1- \sqrt 2 x +x^2)^n =\sum_{k=0}^{2n} a_k x^k.\]
1971 IMO Shortlist, 8
Determine whether there exist distinct real numbers $a, b, c, t$ for which:
[i](i)[/i] the equation $ax^2 + btx + c = 0$ has two distinct real roots $x_1, x_2,$
[i](ii)[/i] the equation $bx^2 + ctx + a = 0$ has two distinct real roots $x_2, x_3,$
[i](iii)[/i] the equation $cx^2 + atx + b = 0$ has two distinct real roots $x_3, x_1.$
1967 AMC 12/AHSME, 33
[asy]
fill(circle((4,0),4),grey);
fill((0,0)--(8,0)--(8,-4)--(0,-4)--cycle,white);
fill(circle((7,0),1),white);
fill(circle((3,0),3),white);
draw((0,0)--(8,0),black+linewidth(1));
draw((6,0)--(6,sqrt(12)),black+linewidth(1));
MP("A", (0,0), W); MP("B", (8,0), E); MP("C", (6,0), S); MP("D",(6,sqrt(12)), N);
[/asy]
In this diagram semi-circles are constructed on diameters $\overline{AB}$, $\overline{AC}$, and $\overline{CB}$, so that they are mutually tangent. If $\overline{CD} \bot \overline{AB}$, then the ratio of the shaded area to the area of a circle with $\overline{CD}$ as radius is:
$\textbf{(A)}\ 1:2\qquad
\textbf{(B)}\ 1:3\qquad
\textbf{(C)}\ \sqrt{3}:7\qquad
\textbf{(D)}\ 1:4\qquad
\textbf{(E)}\ \sqrt{2}:6$
2018 Peru MO (ONEM), 4
4) A $100\times 200$ board has $k$ black cells. An operations consists of choosing a $2\times 3$ or $3\times 2$ sub-board having exactly $5$ black cells and painting of black the remaining cell. Find the least value of $k$ for which exists an initial distribution of the black cells such that after some operations the board is completely black.
2015 South Africa National Olympiad, 1
Points $E$ and $F$ lie inside a square $ABCD$ such that the two triangles $ABF$ and $BCE$ are equilateral. Show that $DEF$ is an equilateral triangle.
2022 AMC 10, 10
Camila writes down five positive integers. The unique mode of these integers is $2$ greater than their median, and the median is $2$ greater than their arithmetic mean. What is the least possible value for the mode?
$\textbf{(A) }5\qquad\textbf{(B) }7\qquad\textbf{(C) }9\qquad\textbf{(D) }11\qquad\textbf{(E) }13$
2023 All-Russian Olympiad Regional Round, 10.3
Given are $50$ distinct sets of positive integers, each of size $30$, such that every $30$ of them have a common element. Prove that all of them have a common element.
1987 IMO Longlists, 77
Find the least positive integer $k$ such that for any $a \in [0, 1]$ and any positive integer $n,$
\[a^k(1 - a)^n < \frac{1}{(n+1)^3}.\]
1970 IMO Longlists, 54
Let $P,Q,R$ be polynomials and let $S(x) = P(x^3) + xQ(x^3) + x^2R(x^3)$ be a polynomial of degree $n$ whose roots $x_1,\ldots, x_n$ are distinct. Construct with the aid of the polynomials $P,Q,R$ a polynomial $T$ of degree $n$ that has the roots $x_1^3 , x_2^3 , \ldots, x_n^3.$
1975 Putnam, A4
Let $m>1$ be an odd integer. Let $n=2m$ and $\theta=e^{2\pi i\slash n}$. Find integers $a_{1},\ldots,a_{k}$ such that
$\sum_{i=1}^{k}a_{i}\theta^{i}=\frac{1}{1-\theta}$.
2017 AMC 8, 25
In the figure shown, $\overline{US}$ and $\overline{UT}$ are line segments each of length 2, and $m\angle TUS = 60^\circ$. Arcs $\overarc{TR}$ and $\overarc{SR}$ are each one-sixth of a circle with radius 2. What is the area of the region shown?
[asy]draw((1,1.732)--(2,3.464)--(3,1.732));
draw(arc((0,0),(2,0),(1,1.732)));
draw(arc((4,0),(3,1.732),(2,0)));
label("$U$", (2,3.464), N);
label("$S$", (1,1.732), W);
label("$T$", (3,1.732), E);
label("$R$", (2,0), S);[/asy]
$\textbf{(A) }3\sqrt{3}-\pi\qquad\textbf{(B) }4\sqrt{3}-\frac{4\pi}{3}\qquad\textbf{(C) }2\sqrt{3}\qquad\textbf{(D) }4\sqrt{3}-\frac{2\pi}{3}\qquad\textbf{(E) }4+\frac{4\pi}{3}$
2009 Princeton University Math Competition, 8
Find the largest positive integer $k$ such that $\phi ( \sigma ( 2^k)) = 2^k$. ($\phi(n)$ denotes the number of positive integers that are smaller than $n$ and relatively prime to $n$, and $\sigma(n)$ denotes the sum of divisors of $n$). As a hint, you are given that $641|2^{32}+1$.
1997 Turkey Junior National Olympiad, 1
Solve the equation $\sqrt {a-\sqrt{a+x}}=x$ in real numbers in terms of the real number $a>1$.