This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

1971 IMO Longlists, 44

Let $m$ and $n$ denote integers greater than $1$, and let $\nu (n)$ be the number of primes less than or equal to $n$. Show that if the equation $\frac{n}{\nu(n)}=m$ has a solution, then so does the equation $\frac{n}{\nu(n)}=m-1$.

2017 CMIMC Individual Finals, 2

Tags: geometry
Points $A$, $B$, and $C$ lie on a circle $\Omega$ such that $A$ and $C$ are diametrically opposite each other. A line $\ell$ tangent to the incircle of $\triangle ABC$ at $T$ intersects $\Omega$ at points $X$ and $Y$. Suppose that $AB=30$, $BC=40$, and $XY=48$. Compute $TX\cdot TY$.

2011 Dutch BxMO TST, 4

Let $n \ge 2$ be an integer. Let $a$ be the greatest positive integer such that $2^a | 5^n - 3^n$. Let $b$ be the greatest positive integer such that $2^b \le n$. Prove that $a \le b + 3$.

2006 MOP Homework, 7

Tags: geometry , incenter
In acute triangle $ABC, CA \ne BC$. Let $I$ denote the incenter of triangle $ABC$. Points $A_1$ and $B_1$ lie on rays $CB$ and $CA$, respectively, such that $2CA_1 = 2CB_1 = AB + BC + CA$. Line $CI$ intersects the circumcircle of triangle $ABC$ again at $P$ (other than $C$). Point $Q$ lies on line $AB$ such that $PQ \perp CP$. Prove that $QI \perp A_1B_1$.

2018 Bulgaria JBMO TST, 4

Each cell of an infinite table (infinite in all directions) is colored with one of $n$ given colors. All six cells of any $2\times 3$ (or $3 \times 2$) rectangle have different colors. Find the smallest possible value of $n$.

2010 Tournament Of Towns, 3

A $1\times 1\times 1$ cube is placed on an $8\times 8$ chessboard so that its bottom face coincides with a square of the chessboard. The cube rolls over a bottom edge so that the adjacent face now lands on the chessboard. In this way, the cube rolls around the chessboard, landing on each square at least once. Is it possible that a particular face of the cube never lands on the chessboard?

1998 National High School Mathematics League, 2

Tags: inequalities
Let $a_1,a_2,\cdots,a_n,b_1,b_2,\cdots,b_n$ are real numbers in $[1,2]$. If $\sum_{i=1}^{n}a_i^2=\sum_{i=1}^{n}b_i^2$, prove that $$\sum_{i=1}^{n}\frac{a_i^3}{b_i}\leq\frac{17}{10}\sum_{i=1}^{n}a_i^2.$$ Find when the equality holds.

1980 AMC 12/AHSME, 28

The polynomial $x^{2n}+1+(x+1)^{2n}$ is not divisible by $x^2+x+1$ if $n$ equals $\text{(A)} \ 17 \qquad \text{(B)} \ 20 \qquad \text{(C)} \ 21 \qquad \text{(D)} \ 64 \qquad \text{(E)} \ 65$

Indonesia Regional MO OSP SMA - geometry, 2006.1

Suppose triangle $ABC$ is right-angled at $B$. The altitude from $B$ intersects the side $AC$ at point $D$. If points $E$ and $F$ are the midpoints of $BD$ and $CD$, prove that $AE \perp BF$.

2007 Tournament Of Towns, 2

Tags: geometry
Let us call a triangle “almost right angle triangle” if one of its angles differs from $90^\circ$ by no more than $15^\circ$. Let us call a triangle “almost isosceles triangle” if two of its angles differs from each other by no more than $15^\circ$. Is it true that that any acute triangle is either “almost right angle triangle” or “almost isosceles triangle”? [i](2 points)[/i]

1965 AMC 12/AHSME, 11

Tags:
Consider the statements: I: $ (\sqrt { \minus{} 4})(\sqrt { \minus{} 16}) \equal{} \sqrt {( \minus{} 4)( \minus{} 16)}$, II: $ \sqrt {( \minus{} 4)( \minus{} 16)} \equal{} \sqrt {64}$, and $ \sqrt {64} \equal{} 8$. Of these the following are [u]incorrect[/u]. $ \textbf{(A)}\ \text{none} \qquad \textbf{(B)}\ \text{I only} \qquad \textbf{(C)}\ \text{II only} \qquad \textbf{(D)}\ \text{III only} \qquad \textbf{(E)}\ \text{I and III only}$

2022 Indonesia TST, A

Determine all functions $f : \mathbb{R} \to \mathbb{R}$ satisfying \[ f(a^2) - f(b^2) \leq (f(a)+b)(a-f(b)) \] for all $a,b \in \mathbb{R}$.

1990 Iran MO (2nd round), 2

Find all integer solutions to the equation \[(x^2-x)(x^2-2x+2)=y^2-1\]

2018 Harvard-MIT Mathematics Tournament, 8

Tags:
A permutation of $\{1, 2, \dots, 7\}$ is chosen uniformly at random. A partition of the permutation into contiguous blocks is correct if, when each block is sorted independently, the entire permutation becomes sorted. For example, the permutation $(3, 4, 2, 1, 6, 5, 7)$ can be partitioned correctly into the blocks $[3, 4, 2, 1]$ and $[6, 5, 7]$, since when these blocks are sorted, the permutation becomes $(1, 2, 3, 4, 5, 6, 7)$. Find the expected value of the maximum number of blocks into which the permutation can be partioned correctly.

2017 India IMO Training Camp, 1

Suppose $f,g \in \mathbb{R}[x]$ are non constant polynomials. Suppose neither of $f,g$ is the square of a real polynomial but $f(g(x))$ is. Prove that $g(f(x))$ is not the square of a real polynomial.

2022 Austrian Junior Regional Competition, 4

Determine all prime numbers $p, q$ and $r$ with $p + q^2 = r^4$. [i](Karl Czakler)[/i]

2018 Romania National Olympiad, 3

On the sides $[AB]$ and $[BC]$ of the parallelogram $ABCD$ are constructed the equilateral triangles $ABE$ and $BCF,$ so that the points $D$ and $E$ are on the same side of the line $AB$, and $F$ and $D$ on different sides of the line $BC$. If the points $E,D$ and $F$ are collinear, then prove that $ABCD$ is rhombus.

2009 Miklós Schweitzer, 6

A set system $ (S,L)$ is called a Steiner triple system, if $ L\neq\emptyset$, any pair $ x,y\in S$, $ x\neq y$ of points lie on a unique line $ \ell\in L$, and every line $ \ell\in L$ contains exactly three points. Let $ (S,L)$ be a Steiner triple system, and let us denote by $ xy$ the thrid point on a line determined by the points $ x\neq y$. Let $ A$ be a group whose factor by its center $ C(A)$ is of prime power order. Let $ f,h: S\to A$ be maps, such that $ C(A)$ contains the range of $ f$, and the range of $ h$ generates $ A$. Show, that if \[ f(x) \equal{} h(x)h(y)h(x)h(xy)\] holds for all pairs $ x\neq y$ of points, then $ A$ is commutative, and there exists an element $ k\in A$, such that $ f(x) \equal{} kh(x)$ for all $ x\in S$.

2019 Online Math Open Problems, 8

Tags:
There are three eight-digit positive integers which are equal to the sum of the eighth powers of their digits. Given that two of the numbers are $24678051$ and $88593477$, compute the third number. [i]Proposed by Vincent Huang[/i]

1980 Austrian-Polish Competition, 4

Prove that $\sum \frac{1}{i_1i_2 \ldots i_k} = n$ is taken over all non-empty subsets $\left\{i_1,i_2, \ldots, i_k\right\}$ of $\left\{1,2,\ldots,n\right\}$. (The $k$ is not fixed, so we are summing over all the $2^n-1$ possible nonempty subsets.)

2019 Romania National Olympiad, 4

Let $p$ be a prime number. For any $\sigma \in S_p$ (the permutation group of $\{1,2,...,p \}),$ define the matrix $A_{\sigma}=(a_{ij}) \in \mathcal{M}_p(\mathbb{Z})$ as $a_{ij} = \sigma^{i-1}(j),$ where $\sigma^0$ is the identity permutation and $\sigma^k = \underbrace{\sigma \circ \sigma \circ ... \circ \sigma}_k.$ Prove that $D = \{ |\det A_{\sigma}| : \sigma \in S_p \}$ has at most $1+ (p-2)!$ elements.

1983 Czech and Slovak Olympiad III A, 2

Given a triangle $ABC$, prove that for every inner point $P$ of the side $AB$ the inequality $$PC\cdot AB<PA\cdot BC+PB\cdot AC$$ holds.

2020-21 KVS IOQM India, 17

Tags:
Two sides of a regular polygon of $n$ sides when extended meet at $28$ degrees. What is smallest possible value of $n$

1991 IMO Shortlist, 9

In the plane we are given a set $ E$ of 1991 points, and certain pairs of these points are joined with a path. We suppose that for every point of $ E,$ there exist at least 1593 other points of $ E$ to which it is joined by a path. Show that there exist six points of $ E$ every pair of which are joined by a path. [i]Alternative version:[/i] Is it possible to find a set $ E$ of 1991 points in the plane and paths joining certain pairs of the points in $ E$ such that every point of $ E$ is joined with a path to at least 1592 other points of $ E,$ and in every subset of six points of $ E$ there exist at least two points that are not joined?

1986 IMO Longlists, 1

Tags: inequalities
Let $k$ be one of the integers $2, 3,4$ and let $n = 2^k -1$. Prove the inequality \[1+ b^k + b^{2k} + \cdots+ b^{nk} \geq (1 + b^n)^k\] for all real $b \geq 0.$