This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

MOAA Individual Speed General Rounds, 2023.9

Tags:
Let $ABCD$ be a trapezoid with $AB \parallel CD$ and $BC \perp CD$. There exists a point $P$ on $BC$ such that $\triangle{PAD}$ is equilateral. If $PB = 20$ and $PC = 23$, the area of $ABCD$ can be expressed in the form $\frac{a\sqrt{b}}{c}$ where $b$ is square-free and $a$ and $c$ are relatively prime. Find $a+b+c$. [i]Proposed by Andy Xu[/i]

2015 Online Math Open Problems, 12

Tags:
At the Intergalactic Math Olympiad held in the year 9001, there are 6 problems, and on each problem you can earn an integer score from 0 to 7. The contestant's score is the [i]product[/i] of the scores on the 6 problems, and ties are broken by the sum of the 6 problems. If 2 contestants are still tied after this, their ranks are equal. In this olympiad, there are $8^6=262144$ participants, and no two get the same score on every problem. Find the score of the participant whose rank was $7^6 = 117649$. [i]Proposed by Yang Liu[/i]

PEN B Problems, 4

Let $g$ be a Fibonacci primitive root $\pmod{p}$. i.e. $g$ is a primitive root $\pmod{p}$ satisfying $g^2 \equiv g+1\; \pmod{p}$. Prove that [list=a] [*] $g-1$ is also a primitive root $\pmod{p}$. [*] if $p=4k+3$ then $(g-1)^{2k+3} \equiv g-2 \pmod{p}$, and deduce that $g-2$ is also a primitive root $\pmod{p}$. [/list]

2008 Silk Road, 4

Find all polynomials $ P\in\mathbb{R}[x]$ such that for all $ r\in\mathbb{Q}$,there exist $ d\in\mathbb{Q}$ such that $ P(d)\equal{}r$

2013 Tournament of Towns, 5

A spacecraft landed on an asteroid. It is known that the asteroid is either a ball or a cube. The rover started its route at the landing site and finished it at the point symmetric to the landing site with respect to the center of the asteroid. On its way, the rover transmitted its spatial coordinates to the spacecraft on the landing site so that the trajectory of the rover movement was known. Can it happen that this information is not suffcient to determine whether the asteroid is a ball or a cube?

1914 Eotvos Mathematical Competition, 1

Let $A$ and $B$ be points on a circle $k$. Suppose that an arc $k'$ of another circle, $\ell$, connects $A$ with $B$ and divides the area inside the circle $k$ into two equal parts. Prove that arc $k'$ is longer than the diameter of $k$.

2025 Kosovo National Mathematical Olympiad`, P3

Find all pairs of natural numbers $(m,n)$ such that the number $5^m+6^n$ has all same digits when written in decimal representation.

2018 Azerbaijan IMO TST, 2

In triangle $ABC$, let $\omega$ be the excircle opposite to $A$. Let $D, E$ and $F$ be the points where $\omega$ is tangent to $BC, CA$, and $AB$, respectively. The circle $AEF$ intersects line $BC$ at $P$ and $Q$. Let $M$ be the midpoint of $AD$. Prove that the circle $MPQ$ is tangent to $\omega$.

2023 Harvard-MIT Mathematics Tournament, 6

Tags: grid , hmmt
Each cell of a $3 $ × $3$ grid is labeled with a digit in the set {$1, 2, 3, 4, 5$} Then, the maximum entry in each row and each column is recorded. Compute the number of labelings for which every digit from $1$ to $5$ is recorded at least once.

2010 AMC 8, 10

Tags: geometry
$6$ pepperoni circles will exactly fit across the diameter of a $12$-inch pizza when placed. If a total of $24$ circles of pepperoni are placed on this pizza without overlap, what fraction of the pizza is covered with pepperoni? $ \textbf{(A)}\ \frac 12 \qquad\textbf{(B)}\ \frac 23 \qquad\textbf{(C)}\ \frac 34 \qquad\textbf{(D)}\ \frac 56 \qquad\textbf{(E)}\ \frac 78 $

2022 CMWMC, R6

[u]Set 6[/u] [b]p16.[/b] Let $x$ and $y$ be non-negative integers. We say point $(x, y)$ is square if $x^2 + y$ is a perfect square. Find the sum of the coordinates of all distinct square points which also satisfy $x^2 + y \le 64$. [b]p17.[/b] Two integers $a$ and $b$ are randomly chosen from the set $\{1, 2, 13, 17, 19, 87, 115, 121\}$, with $a > b$. What is the expected value of the number of factors of $ab$? [b]p18.[/b] Marnie the Magical Cello is jumping on nonnegative integers on number line. She starts at $0$ and jumps following two specific rules. For each jump she can either jump forward by $1$ or jump to the next multiple of $4$ (the next multiple must be strictly greater than the number she is currently on). How many ways are there for her to jump to $2022$? (Two ways are considered distinct only if the sequence of numbers she lands on is different.) PS. You should use hide for answers.

2020 Romanian Master of Mathematics Shortlist, C3

Determine the smallest positive integer $k{}$ satisfying the following condition: For any configuration of chess queens on a $100 \times 100$ chequered board, the queens can be coloured one of $k$ colours so that no two queens of the same colour attack each other. [i]Russia, Sergei Avgustinovich and Dmitry Khramtsov[/i]

2005 Brazil National Olympiad, 6

Given positive integers $a,c$ and integer $b$, prove that there exists a positive integer $x$ such that \[ a^x + x \equiv b \pmod c, \] that is, there exists a positive integer $x$ such that $c$ is a divisor of $a^x + x - b$.

1993 Moldova Team Selection Test, 9

Positive integer $q{}$ is $m-additive$ $(m\in\mathbb{N}, m\geq2)$ if there exist pairwise distinct positive integers $a_1,a_2,\ldots,a_m$ such that $q=a_1+a_2+\ldots+a_m$ and $a_i | a_{i+1}$ for $i=1,2,\ldots,m-1$. [b]a)[/b] Prove that $1993$ is $8$-additive, but $9$-additive. [b]b)[/b] Determine the greatest integer $m$ for which $2102$ is $m$-additive.

2012 JBMO ShortLists, 7

Tags:
Let $MNPQ$ be a square of side length $1$ , and $A , B , C , D$ points on the sides $MN , NP , PQ$ and $QM$ respectively such that $AC \cdot BD=\frac{5}{4}$. Can the set $ \{AB , BC , CD , DA \}$ be partitioned into two subsets $S_1$ and $S_2$ of two elements each , so that each one has the sum of his elements a positive integer?

1976 Euclid, 6

Tags: function
Source: 1976 Euclid Part A Problem 6 ----- The $y$-intercept of the graph of the function defined by $y=\frac{4(x+3)(x-2)-24}{(x+4)}$ is $\textbf{(A) } -24 \qquad \textbf{(B) } -12 \qquad \textbf{(C) } 0 \qquad \textbf{(D) } -4 \qquad \textbf{(E) } -48$

2018 Istmo Centroamericano MO, 1

A sequence of positive integers $g_1$, $g_2$, $g_3$, $. . . $ is defined as follows: $g_1 = 1$ and for every positive integer $n$, $$g_{n + 1} = g^2_n + g_n + 1.$$ Show that $g^2_{n} + 1$ divides $g^2_{n + 1}+1$ for every positive integer $n$.

KoMaL A Problems 2017/2018, A. 722

The Hawking Space Agency operates $n-1$ space flights between the $n$ habitable planets of the Local Galaxy Cluster. Each flight has a fixed price which is the same in both directions, and we know that using these flights, we can travel from any habitable planet to any habitable planet. In the headquarters of the Agency, there is a clearly visible board on a wall, with a portrait, containing all the pairs of different habitable planets with the total price of the cheapest possible sequence of flights connecting them. Suppose that these prices are precisely $1,2, ... , \binom{n}{2}$ monetary units in some order. prove that $n$ or $n-2$ is a square number.

2017 BMT Spring, 7

There are $86400$ seconds in a day, which can be deduced from the conversions between seconds, minutes, hours, and days. However, the leading scientists decide that we should decide on $3$ new integers $x, y$, and $z$, such that there are $x$ seconds in a minute, $y$ minutes in an hour, and $z$ hours in a day, such that $xyz = 86400$ as before, but such that the sum $x + y + z$ is minimized. What is the smallest possible value of that sum?

2025 Kosovo National Mathematical Olympiad`, P2

Find all functions $f:\mathbb{R}\rightarrow\mathbb{R}$ with the property that for every real numbers $x$ and $y$ it holds that $$f(x+yf(x+y))=f(x)+f(xy)+y^2.$$

1995 All-Russian Olympiad Regional Round, 10.7

$N^3$ unit cubes are made into beads by drilling a hole through them along a diagonal, put on a string and binded. Thus the cubes can move freely in space as long as the vertices of two neighboring cubes (including the first and last one) are touching. For which $N$ is it possible to build a cube of edge $N$ using these cubes?

1970 All Soviet Union Mathematical Olympiad, 141

All the $5$-digit numbers from $11111$ to $99999$ are written on the cards. Those cards lies in a line in an arbitrary order. Prove that the resulting $444445$-digit number is not a power of two.

1972 USAMO, 1

The symbols $ (a,b,\ldots,g)$ and $ [a,b,\ldots,g]$ denote the greatest common divisor and least common multiple, respectively, of the positive integers $ a,b,\ldots,g$. For example, $ (3,6,18)\equal{}3$ and $ [6,15]\equal{}30$. Prove that \[ \frac{[a,b,c]^2}{[a,b][b,c][c,a]}\equal{}\frac{(a,b,c)^2}{(a,b)(b,c)(c,a)}.\]

1988 Federal Competition For Advanced Students, P2, 3

Show that there is precisely one sequence $ a_1,a_2,...$ of integers which satisfies $ a_1\equal{}1, a_2>1,$ and $ a_{n\plus{}1}^3\plus{}1\equal{}a_n a_{n\plus{}2}$ for $ n \ge 1$.

2024 China Team Selection Test, 14

For a positive integer $n$ and a subset $S$ of $\{1, 2, \dots, n\}$, let $S$ be "$n$-good" if and only if for any $x$, $y\in S$ (allowed to be same), if $x+y\leq n$, then $x+y\in S$. Let $r_n$ be the smallest real number such that for any positive integer $m\leq n$, there is always a $m$-element "$n$-good" set, so that the sum of its elements is not more than $m\cdot r_n$. Prove that there exists a real number $\alpha$ such that for any positive integer $n$, $|r_n-\alpha n|\leq 2024.$