This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2023 HMNT, 6

Tags: algebra
A function $g$ is [i]ever more[/i] than a function $h$ if, for all real numbers $x$, we have $g(x) \ge h(x)$. Consider all quadratic functions $f(x)$ such that $f(1) = 16$ and $f(x)$ is ever more than both $(x + 3)^2$ and $x^2 + 9$. Across all such quadratic functions $f$, compute the minimum value of $f(0)$.

2019 Kosovo National Mathematical Olympiad, 2

Find all positive integers $n$ such that $6^n+1$ it has all the same digits when it is writen in decimal representation.

2017 Polish Junior Math Olympiad Second Round, 2.

Tags: geometry
Prove that if the diagonals of a certain trapezoid are perpendicular, then the sum of the lengths of the bases of this trapezoid is not greater than the sum of the lengths of the sides of this trapezoid.

2013 BMT Spring, 10

Let $\sigma_n$ be a permutation of $\{1,\ldots,n\}$; that is, $\sigma_n(i)$ is a bijective function from $\{1,\ldots,n\}$ to itself. Define $f(\sigma)$ to be the number of times we need to apply $\sigma$ to the identity in order to get the identity back. For example, $f$ of the identity is just $1$, and all other permutations have $f(\sigma)>1$. What is the smallest $n$ such that there exists a $\sigma_n$ with $f(\sigma_n)=k$?

2017 BMT Spring, 2

Tags: algebra
Find all solutions to $3^x-9^{x-1} = 2.$

2024 Ukraine National Mathematical Olympiad, Problem 6

Tags: geometry
The points $A, B, C, D$ lie on the line $\ell$ in this order. The points $P$ and $Q$ are chosen on one side of the line $\ell$, and the point $R$ is chosen on the other side so that: $$\angle APB = \angle CPD = \angle QBC = \angle QCB = \angle RAD = \angle RDA$$ Prove that the points $P, Q, R$ lie on the same line. [i]Proposed by Mykhailo Shtandenko, Fedir Yudin[/i]

2020 Candian MO, 3#

okay this one is from Prof. Mircea Lascu from Zalau, Romaniaand Prof. V. Cartoaje from Ploiesti, Romania. It goes like this: given being a triangle ABC for every point M inside we construct the points A[size=67]M[/size], B[size=67]M[/size], C[size=67]M[/size] on the circumcircle of the triangle ABC such that A, A[size=67]M[/size], M are collinear and so on. Find the locus of these points M for which the area of the triangle A[size=67]M[/size] B[size=67]M[/size] C[size=67]M[/size] is bigger than the area of the triangle ABC.

2005 Danube Mathematical Olympiad, 4

Let $k$ and $n$ be positive integers. Consider an array of $2\left(2^n-1\right)$ rows by $k$ columns. A $2$-coloring of the elements of the array is said to be [i]acceptable[/i] if any two columns agree on less than $2^n-1$ entries on the same row. Given $n$, determine the maximum value of $k$ for an acceptable $2$-coloring to exist.

II Soros Olympiad 1995 - 96 (Russia), 9.8

Let ${a}$ be the fractional part of the number $a$, that is, $\{a\} = a - [a]$, where$ [a]$ is the integer part of $ a$. (For example, $\{1.7\} = 1.7 -1 = 0.7$,$\{-\sqrt2 \}= -\sqrt2 -(-3) = 3-\sqrt2$.) a) How many solutions does the equation have $$ \{5\{4\{3\{2\{x\}\}\}\}\}=1\,\, ?$$ b) Find its greatest solution.

2022 Korea Junior Math Olympiad, 2

For positive integer $n \ge 3$, find the number of ordered pairs $(a_1, a_2, ... , a_n)$ of integers that satisfy the following two conditions [list=disc] [*]For positive integer $i$ such that $1\le i \le n$, $1 \le a_i \le i$ [*]For positive integers $i,j,k$ such that $1\le i < j < k \le n$, if $a_i = a_j$ then $a_j \ge a_k$ [/list]

1955 Poland - Second Round, 3

What should the angle at the vertex of an isosceles triangle be so that it is possible to construct a triangle with sides equal to the height, base, and one of the other sides of the isosceles triangle?

2007 Indonesia TST, 4

Let $ X$ be a set of $ k$ vertexes on a plane such that no three of them are collinear. Let $ P$ be the family of all $ {k \choose 2}$ segments that connect each pair of points. Determine $ \tau(P)$.

2022 AIME Problems, 14

Tags:
Given $\triangle ABC$ and a point $P$ on one of its sides, call line $\ell$ the splitting line of $\triangle ABC$ through $P$ if $\ell$ passes through $P$ and divides $\triangle ABC$ into two polygons of equal perimeter. Let $\triangle ABC$ be a triangle where $BC = 219$ and $AB$ and $AC$ are positive integers. Let $M$ and $N$ be the midpoints of $\overline{AB}$ and $\overline{AC}$, respectively, and suppose that the splitting lines of $\triangle ABC$ through $M$ and $N$ intersect at $30^{\circ}$. Find the perimeter of $\triangle ABC$.

2016 Oral Moscow Geometry Olympiad, 5

Points $I_A, I_B, I_C$ are the centers of the excircles of $ABC$ related to sides $BC, AC$ and $AB$ respectively. Perpendicular from $I_A$ to $AC$ intersects the perpendicular from $I_B$ to $B_C$ at point $X_C$. The points $X_A$ and $X_B$. Prove that the lines $I_AX_A, I_BX_B$ and $I_CX_C$ intersect at the same point.

2025 CMIMC Geometry, 6

Tags: geometry
Points $A, B, C, D, E,$ and $F$ lie on a sphere with center $O$ and radius $R$ such that $\overline{AB}, \overline{CD},$ and $\overline{EF}$ are pairwise perpendicular and all meet at a point $X$ inside the sphere. If $AX=1, CX=\sqrt{2}, EX=2,$ and $OX=\tfrac{\sqrt{2}}{2},$ compute the sum of all possible values of $R^2.$

2017 Philippine MO, 3

Each of the numbers in the set \(A = \{1,2, \cdots, 2017\}\) is colored either red or white. Prove that for \(n \geq 18\), there exists a coloring of the numbers in \(A\) such that any of its n-term arithmetic sequences contains both colors.

2023 MOAA, 10

Tags:
If $x,y,z$ satisfy the system of equations \[xy+yz+zx=23\] \[\frac{y}{x+y}+\frac{z}{y+z}+\frac{x}{z+x}=-1\] \[\frac{z^2x}{x+y}+\frac{x^2y}{y+z}+\frac{y^2z}{z+x}=202\] Find the value of $x^2+y^2+z^2$. [i]Proposed by Harry Kim[/i]

2011 Morocco National Olympiad, 4

Let $ABC$ be a triangle with area $1$ and $P$ the middle of the side $[BC]$. $M$ and $N$ are two points of $[AB]-\left \{ A,B \right \} $ and $[AC]-\left \{ A,C \right \}$ respectively such that $AM=2MB$ and$CN=2AN$. The two lines $(AP)$ and $(MN)$ intersect in a point $D$. Find the area of the triangle $ADN$.

1999 Mexico National Olympiad, 5

In a quadrilateral $ABCD$ with $AB // CD$, the external bisectors of the angles at $B$ and $C$ meet at $P$, while the external bisectors of the angles at $A$ and $D$ meet at $Q$. Prove that the length of $PQ$ equals the semiperimeter of $ABCD$.

2021 JHMT HS, 10

Let $P$ be a set of nine points in the Cartesian coordinate plane, no three of which lie on the same line. Call an ordering $\{Q_1, Q_2, \ldots, Q_9\}$ of the points in $P$ [i]special[/i] if there exists a point $C$ in the same plane such that $CQ_1 < CQ_2 < \cdots < CQ_9$. Over all possible sets $P,$ what is the largest possible number of distinct special orderings of $P?$

1989 Swedish Mathematical Competition, 4

Let $ABCD$ be a regular tetrahedron. Find the positions of point $P$ on the edge $BD$ such that the edge $CD$ is tangent to the sphere with diameter $AP$.

2021 CHKMO, 4

Let $a,b$ and $c$ be positive real numbers satisfying $abc=1$. Prove that \[\dfrac{1}{a^3+2b^2+2b+4}+\dfrac{1}{b^3+2c^2+2c+4}+\dfrac{1}{c^3+2a^2+2a+4}\leq \dfrac13.\]

1988 Tournament Of Towns, (171) 4

We have a set of weights with masses $1$ gm, $2$ gm, $4$ gm and so on, all values being powers of $2$ . Some of these weights may have equal mass. Some weights were put on both sides of a balance beam, resulting in equilibrium. It is known that on the left hand side all weights were distinct . Prove that on the right hand side there were no fewer weights than on the left hand side.

2015 Baltic Way, 2

Let $n$ be a positive integer and let $a_1,\cdots ,a_n$ be real numbers satisfying $0\le a_i\le 1$ for $i=1,\cdots ,n.$ Prove the inequality \[(1-{a_i}^n)(1-{a_2}^n)\cdots (1-{a_n}^n)\le (1-a_1a_2\cdots a_n)^n.\]

2013 Purple Comet Problems, 5

A picture with an area of $160$ square inches is surrounded by a $2$ inch border. The picture with its border is a rectangle twice as long as it is wide. How many inches long is that rectangle?