This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2016 China National Olympiad, 2

In $\triangle AEF$, let $B$ and $D$ be on segments $AE$ and $AF$ respectively, and let $ED$ and $FB$ intersect at $C$. Define $K,L,M,N$ on segments $AB,BC,CD,DA$ such that $\frac{AK}{KB}=\frac{AD}{BC}$ and its cyclic equivalents. Let the incircle of $\triangle AEF$ touch $AE,AF$ at $S,T$ respectively; let the incircle of $\triangle CEF$ touch $CE,CF$ at $U,V$ respectively. Prove that $K,L,M,N$ concyclic implies $S,T,U,V$ concyclic.

2022 Pan-African, 4

Find all functions $f$ and $g$ defined from $\mathbb{R}_{>0}$ to $\mathbb{R}_{>0}$ such that for all $x, y > 0$ the two equations hold $$ (f(x) + y - 1)(g(y) + x - 1) = {(x + y)}^2 $$ $$ (-f(x) + y)(g(y) + x) = (x + y + 1)(y - x - 1) $$ [i]Note: $\mathbb{R}_{>0}$ denotes the set of positive real numbers.[/i]

2014 China Western Mathematical Olympiad, 4

Given a positive integer $n$, let $a_1,a_2,..,a_n$ be a sequence of nonnegative integers. A sequence of one or more consecutive terms of $a_1,a_2,..,a_n$ is called $dragon$ if their aritmetic mean is larger than 1. If a sequence is a $dragon$, then its first term is the $head$ and the last term is the $tail$. Suppose $a_1,a_2,..,a_n$ is the $head$ or/and $tail$ of some $dragon$ sequence; determine the minimum value of $a_1+a_2+\cdots +a_n$ in terms of $n$.

2015 Romanian Master of Mathematics, 4

Tags: geometry
Let $ABC$ be a triangle, and let $D$ be the point where the incircle meets side $BC$. Let $J_b$ and $J_c$ be the incentres of the triangles $ABD$ and $ACD$, respectively. Prove that the circumcentre of the triangle $AJ_bJ_c$ lies on the angle bisector of $\angle BAC$.

2021/2022 Tournament of Towns, P5

Tags: geometry
A quadrilateral ABCD is inscribed into a circle ω with center O. The circumcircle of the triangle AOC intersects the lines AB, BC, CD and DA the second time at the points M, N, K and L respectively. Prove that the lines MN, KL and the tangents to ω at the points A и C all touch the same circle.

2020 AMC 12/AHSME, 8

Tags: algebra
How many ordered pairs of integers $(x, y)$ satisfy the equation$$x^{2020}+y^2=2y?$$ $\textbf{(A) } 1 \qquad\textbf{(B) } 2 \qquad\textbf{(C) } 3 \qquad\textbf{(D) } 4 \qquad\textbf{(E) } \text{infinitely many}$

2004 Purple Comet Problems, 1

Tags:
How many different positive integers divide $10!$ ?

2024 Azerbaijan Senior NMO, 5

At the beginning of the academic year, the Olympic Center must accept a certain number of talented students for the 2024 different classes it offers. Although the admitted students are given freedom of choice in classes, there are certain rules. So, any student must take at least one class and cannot take all the classes. At the same time, there cannot be a common class that all students take, and any class must be taken by at least one student. As a final addition to the center's rules, for any student and any class that this student did not enroll in (call this type of class A), the number of students in each A must be greater than the number of classes this student enrolled. At least how many students must the center accept for these rules to be valid?

2016 HMNT, 3

The three points $A, B, C$ form a triangle. $AB=4, BC=5, AC=6$. Let the angle bisector of $\angle A$ intersect side $BC$ at $D$. Let the foot of the perpendicular from $B$ to the angle bisector of $\angle A$ be $E$. Let the line through $E$ parallel to $AC$ meet $BC$ at $F$. Compute $DF$.

2019 Final Mathematical Cup, 3

Tags: function , algebra
Determine all functions $f:(0,\infty)\to\mathbb{R}$ satisfying $$\left(x+\frac{1}{x}\right)f(y)=f(xy)+f\left(\frac{y}{x}\right)$$ for all $x,y>0$.

2021 Latvia Baltic Way TST, P1

Tags: inequalities
Prove that for positive real numbers $a,b,c$ satisfying $abc=1$ the following inequality holds: $$ \frac{a}{b(1+c)} +\frac{b}{c(1+a)}+\frac{c}{a(1+b)} \ge \frac{3}{2} $$

1992 AIME Problems, 3

Tags: ratio
A tennis player computes her win ratio by dividing the number of matches she has won by the total number of matches she has played. At the start of a weekend, her win ratio is exactly $.500$. During the weekend, she plays four matches, winning three and losing one. At the end of the weekend, her win ratio is greater than $.503$. What's the largest number of matches she could've won before the weekend began?

2015 Balkan MO Shortlist, N4

Find all pairs of positive integers $(x,y)$ with the following property: If $a,b$ are relative prime and positive divisors of $ x^3 + y^3$, then $a+b - 1$ is divisor of $x^3+y^3$. (Cyprus)

2017 Romania National Olympiad, 4

Find the number of functions $ A\stackrel{f}{\longrightarrow } A $ for which there exist two functions $ A\stackrel{g}{\longrightarrow } B\stackrel{h}{\longrightarrow } A $ having the properties that $ g\circ h =\text{id.} $ and $ h\circ g=f, $ where $ B $ and $ A $ are two finite sets.

2011 China Girls Math Olympiad, 5

A real number $\alpha \geq 0$ is given. Find the smallest $\lambda = \lambda (\alpha ) > 0$, such that for any complex numbers ${z_1},{z_2}$ and $0 \leq x \leq 1$, if $\left| {{z_1}} \right| \leq \alpha \left| {{z_1} - {z_2}} \right|$, then $\left| {{z_1} - x{z_2}} \right| \leq \lambda \left| {{z_1} - {z_2}} \right|$.

2013 Argentina Cono Sur TST, 2

Tags: algebra
If $ x\neq1$, $ y\neq1$, $ x\neq y$ and \[ \frac{yz\minus{}x^{2}}{1\minus{}x}\equal{}\frac{xz\minus{}y^{2}}{1\minus{}y}\] show that both fractions are equal to $ x\plus{}y\plus{}z$.

2007 Sharygin Geometry Olympiad, 4

Given a triangle $ABC$. An arbitrary point $P$ is chosen on the circumcircle of triangle $ABH$ ($H$ is the orthocenter of triangle $ABC$). Lines $AP$ and $BP$ meet the opposite sidelines of the triangle at points $A' $ and $B'$, respectively. Determine the locus of midpoints of segments $A'B'$.

2008 Kyiv Mathematical Festival, 1

Tags:
Find all positive integers $ k$ for which equation $ n^m\minus{}m^n\equal{}k$ has solution in positive integers.

2022 Germany Team Selection Test, 3

Show that $n!=a^{n-1}+b^{n-1}+c^{n-1}$ has only finitely many solutions in positive integers. [i]Proposed by Dorlir Ahmeti, Albania[/i]

1980 Vietnam National Olympiad, 2

Let $m_1, m_2, \cdots ,m_k$ be positive numbers with the sum $S$. Prove that \[\displaystyle\sum_{i=1}^k\left(m_i +\frac{1}{m_i}\right)^2 \ge k\left(\frac{k}{S}+\frac{S}{k}\right)^2\]

1994 National High School Mathematics League, 2

Give two statements: (1) $a,b,c$ are complex numbers, if $a^2+b^2>c^2$, then $a^2+b^2-c^2>0$. (2) $a,b,c$ are complex numbers, if $a^2+b^2-c^2>0$, then $a^2+b^2>c^2$. Then, which is true? $\text{(A)}$ (1) is correct, (2) is correct as well $\text{(B)}$ (1) is correct, (2) is incorrect $\text{(C)}$ (1) is incorrect, (2) is incorrect as well $\text{(D)}$ (1) is incorrect, (2) is correct

2015 Romania National Olympiad, 3

Tags: function , algebra
Find all functions $ f,g:\mathbb{Q}\longrightarrow\mathbb{Q} $ that verify the relations $$ \left\{\begin{matrix} f(g(x)+g(y))=f(g(x))+y \\ g(f(x)+f(y))=g(f(x))+y\end{matrix}\right. , $$ for all $ x,y\in\mathbb{Q} . $

1976 Swedish Mathematical Competition, 4

A number is placed in each cell of an $n \times n$ board so that the following holds: (A) the cells on the boundary all contain 0; (B) other cells on the main diagonal are each1 greater than the mean of the numbers to the left and right; (C) other cells are the mean of the numbers to the left and right. Show that (B) and (C) remain true if ''left and right'' is replaced by ''above and below''.

2000 Bulgaria National Olympiad, 2

Let be given an acute triangle $ABC$. Show that there exist unique points $A_1 \in BC$, $B_1 \in CA$, $C_1 \in AB$ such that each of these three points is the midpoint of the segment whose endpoints are the orthogonal projections of the other two points on the corresponding side. Prove that the triangle $A_1B_1C_1$ is similar to the triangle whose side lengths are the medians of $\triangle ABC$.

2010 Contests, 4

The two circles $\Gamma_1$ and $\Gamma_2$ intersect at $P$ and $Q$. The common tangent that's on the same side as $P$, intersects the circles at $A$ and $B$,respectively. Let $C$ be the second intersection with $\Gamma_2$ of the tangent to $\Gamma_1$ at $P$, and let $D$ be the second intersection with $\Gamma_1$ of the tangent to $\Gamma_2$ at $Q$. Let $E$ be the intersection of $AP$ and $BC$, and let $F$ be the intersection of $BP$ and $AD$. Let $M$ be the image of $P$ under point reflection with respect to the midpoint of $AB$. Prove that $AMBEQF$ is a cyclic hexagon.